
Bluetopia
®
 Bluetooth Protocol Stack Kernel API Reference Manual Release 4.0.1

Stonestreet One

Bluetooth Protocol Stack
Kernel

(Non-threaded O/S)

Application Programming Interface
Reference Manual

Release: 4.0.1
January 10, 2014

Louisville, KY www.stonestreetone.com

Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc., USA and licensed to Stonestreet One, LLC.
Bluetopia

®
, Stonestreet One

TM
, and the Stonestreet One logo are registered trademarks of Stonestreet One, LLC, Louisville,

Kentucky, USA. All other trademarks are property of their respective owners.
Copyright © 2000-2014 by Stonestreet One, LLC. All rights reserved.

http://www.stonestreetone.com/

Bluetopia
®
 Bluetooth Protocol Stack Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 2 of 26

 Table Of Contents

1. INTRODUCTION.. 3

1.1 Scope ... 3

1.2 Acronyms and Abbreviations ... 4

2. BLUETOOTH PROTOCOL STACK KERNEL PROGRAMMING INTERFACE ... 6

2.1 Bluetooth Protocol Stack Kernel Commands .. 6
BTPS_Delay 7
BTPS_GetTickCount . .. 7
BTPS_AddFunctionToScheduler 8
BTPS_DeleteFunctionFromScheduler . .. 8
BTPS_ExecuteScheduler . .. 9
BTPS_ProcessScheduler 9
BTPS_AllocateMemory . .. 9
BTPS_FreeMemory . .. 10
BTPS_MemCopy . .. 10
BTPS_MemMove 11
BTPS_MemInitialize . .. 11
BTPS_MemCompare . .. 11
BTPS_MemCompareI .. 12
BTPS_StringCopy .. 12
BTPS_StringLength . .. 13
BTPS_SprintF 13
BTPS_CreateMailbox 13
BTPS_AddMailbox .. 14
BTPS_WaitMailbox . .. 15
BTPS_QueryMailbox 15
BTPS_DeleteMailbox 16
BTPS_Init 16
BTPS_DeInit 16
BTPS_OutputMessage . .. 16
BTPS_SetDebugMask . .. 17
BTPS_TestDebugZone 17
BTPS_DumpData 17

2.2 BTPS Kernel Scheduled Function Prototype .. 18
BTPS_SchedulerFunction_t . .. 18

3. 3. FILE DISTRIBUTIONS .. 19

3. BLUETOOTH/KERNEL INTERFACE HEADER FILE ... 20

Bluetopia
®
 Bluetooth Protocol Stack Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 3 of 26

1. Introduction

Bluetopia
®
, the Bluetooth Protocol Stack by Stonestreet One provides a software architecture

that encapsulates the upper functionality of the Bluetooth Protocol Stack. More specifically, this

stack is a software solution that resides above the Physical HCI (Host Controller Interface)

Transport Layer and extends through the L2CAP (Logical Link Control and Adaptation

Protocol) and the SCO (Synchronous Connection-Oriented) Link layers. In addition to basic

functionality at these layers, the Bluetooth Protocol Stack by Stonestreet One provides

implementations of the Service Discovery Protocol (SDP), RFCOMM (the Radio Frequency

serial COMMunications port emulator), and several of the Bluetooth Profiles. Program access to

these layers, services, and profiles is handled via Application Programming Interface (API) calls.

This document focuses on the API reference that contains a description of all programming

interfaces for Stonestreet One’s Bluetooth Protocol Stack Kernel, which can be used when

another OS is not needed or available. The OS specified in this document is a simple scheduler.

The basic operation of the scheduler is as follows:

1. The programmer registers one or more functions with the scheduler described this

document. The programmer specifies the period (in milliseconds) that the function is to

be repeatedly called.

2. The scheduler loops through the list of all functions that have been registered and calls

the specified registered function when the specified timeout period elapses. The process

continues indefinitely, the scheduler never returns.

Typical program flow is to initialize the scheduler in the main program entry point, register the

functions (with time period), and start the execution of the scheduler (no functions will be called

until the scheduler is started). This document will describe the features of the scheduler, as well

as support functions that Bluetopia
®
 uses, and are available to application programmers. Chapter

2 of this document describes the functions available, and chapter 3 contains the header file name

list for the Bluetooth Protocol Stack Kernel library.

1.1 Scope

This reference manual provides information on the Bluetooth Protocol Stack Kernel API.

The following documents may be used for additional background and technical depth regarding

the Bluetooth technology.

1. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 2.1+EDR, July 26, 2007.

2. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 2.1+EDR, July 26, 2007.

3. Specification of the Bluetooth System, Volume 2, Core System Package

[Controller Volume], version 2.1+EDR, July 26, 2007.

4. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 2.1+EDR, July 26, 2007.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 4 of 26

5. Specification of the Bluetooth System, Volume 4, Host Controller Interface,

version 2.1+EDR, July 26, 2007.

6. Specification of the Bluetooth System, Bluetooth Core Specification Addendum 1,

June 26, 2008.

7. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 3.0+HS, April 21, 2009.

8. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 3.0+HS, April 21, 2009.

9. Specification of the Bluetooth System, Volume 2, Core System Package

[Controller Volume], version 3.0+HS, April 21, 2009.

10. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 3.0+HS, April 21, 2009.

11. Specification of the Bluetooth System, Volume 4, Host Controller Interface

[Transport Layer], version 3.0+HS, April 21, 2009.

12. Specification of the Bluetooth System, Volume 5, Core System Package [AMP

Controller Volume], version 3.0+HS, April 21, 2009.

13. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 4.0, June 30, 2010.

14. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 4.0, June 30, 2010.

15. Specification of the Bluetooth System, Volume 2, Core System Package [BR/EDR

Controller Volume], version 4.0, June 30, 2010.

16. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 4.0, June 30, 2010.

17. Specification of the Bluetooth System, Volume 4, Host Controller Interface

[Transport Layer], version 4.0, June 30, 2010.

18. Specification of the Bluetooth System, Volume 5, Core System Package [AMP

Controller Volume], version 4.0, June 30, 2010.

19. Specification of the Bluetooth System, Volume 6, Core System Package [Low

Energy Controller Volume], version 4.0, June 30, 2010.

20. Bluetopia
®

Protocol Stack, System Call Requirements, version 4.0, June 30, 2011

21. Bluetopia
®

Protocol Stack, Application Programming Interface Reference

Manual, version 4.0, June 30, 2011.

1.2 Acronyms and Abbreviations

Acronyms and abbreviations used in this document and other Bluetooth specifications are listed

in the table below.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 5 of 26

Term Meaning

API Application Programming Interface

BD_ADDR Bluetooth Device Address

BT Bluetooth

BTPS Bluetooth Protocol Stack

FIFO First In First Out

HS High Speed

LE Low Energy

LSB Least Significant Bit

MSB Most Significant Bit

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 6 of 26

2. Bluetooth Protocol Stack Kernel
Programming Interface

The Bluetooth Protocol Stack Kernel programming interface defines the procedures to be used to

when using the Stonestreet One Bluetooth Protocol Stack Kernel Scheduler. The Bluetooth

Protocol Stack Kernel commands are listed in section 2.1 and the prototype for the Scheduled

Function is described in section 2.2. The actual prototypes and constants outlined in this section

can be found in the BKRNLAPI.H header file in the Bluetopia distribution.

2.1 Bluetooth Protocol Stack Kernel Commands

The available Bluetooth Protocol Stack Kernel command functions are listed in the table below

and are described in the text that follows.

Function Description

BTPS_Delay Delay the current task for the time specified.

BTPS_GetTickCount Retrieve the current tick count of the system.

BTPS_AddFunctionToScheduler Add a scheduled function to the scheduler.

BTPS_DeleteFunctionFromScheduler Remove a previously added scheduled function from

the scheduler.

BTPS_ExecuteScheduler Begin execution of the scheduler.

BTPS_ProcessScheduler Process all scheduled functions in the scheduler (and

return).

BTPS_AllocateMemory Allocate a block of memory.

BTPS_FreeMemory Free a block of previously allocated memory.

BTPS_MemCopy Copy a block of memory.

BTPS_MemMove Copy a block of memory from a source to a

destination.

BTPS_MemInitialize Fill a block of memory with a specified value.

BTPS_MemCompare Compare two blocks of memory to see if they are

equal.

BTPS_MemCompareI Compare two blocks of memory to see if they are

equal using a case insensitive compare.

BTPS_StringCopy Copy a NULL terminated ASCII string to a

destination.

BTPS_StringLength Determine the length of a NULL terminated ASCII

string.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 7 of 26

BTPS_SprintF Macro mapping of C run-time library sprintf()

function.

BTPS_CreateMailbox Create a mailbox.

BTPS_AddMailbox Add data to a mailbox.

BTPS_WaitMailbox Retrieve data from a mailbox.

BTPS_QueryMailbox Determine if there is anything queued in a mailbox.

BTPS_DeleteMailbox Delete a mailbox.

BTPS_Init Module initialization function.

BTPS_DeInit Module de-initialization function.

BTPS_OutputMessage Output debugging function (not currently called by

Bluetopia).

BTPS_SetDebugMask Update the current Debugging Zone Mask.

BTPS_TestDebugMask Determine if a specified Debug Zone Mask is

enabled.

BTPS_DumpData Output debugging function (not currently called by

Bluetopia).

BTPS_Delay .

The following function is responsible for delaying the currently executing scheduled

function (task) for the specified duration (specified in milliseconds). Very small timeouts

might be smaller in granularity than the system can support.

Prototype:

void BTPSAPI BTPS_Delay(unsigned long MilliSeconds)

Parameters:

MilliSeconds Number of milliseconds to delay.

Return:

BTPS_GetTickCount .

The following function is responsible for retrieving the current Tick Count of system.

This function returns the System Tick Count in System Tick Count resolution. The

System Tick Count is defined in Milliseconds. The value returned from this function is

basically the number of milliseconds that have elapsed since the system was started.

Prototype:

unsigned long BTPSAPI BTPS_GetTickCount(void)

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 8 of 26

Parameters:

Return:

SystemTickCount Current tick count of the system.

BTPS_AddFunctionToScheduler .

The following function is provided to allow a mechanism for adding scheduled functions

to the Scheduler. These functions are called periodically by the Scheduler (based upon

the requested schedule period). Once a function is added to the Scheduler, it can only be

removed by calling the BTPS_DeleteFunctionFromScheduler() function. The

BTPS_ExecuteScheduler() function MUST be called ONCE (AND ONLY ONCE) to

begin the Scheduler executing periodic scheduled functions (or the

BTPS_ProcessScheduler() function can be called repeatedly).

Prototype:

Boolean_t BTPSAPI BTPS_AddFunctionToScheduler(

BTPS_SchedulerFunction_t SchedulerFunction,

 void *SchedulerParameter, unsigned int Period);

Parameters:

SchedulerFunction Function to add to the Scheduler.

SchedulerParameter Caller specified context parameter that is passed to the function

when it is called by the Scheduler.

Period Scheduler period, defined in milliseconds, which define how

often the function will be called by the scheduler.

Return:

TRUE (non-zero) if function added successfully.

FALSE (zero) if an error occurred.

BTPS_DeleteFunctionFromScheduler .

The following function is provided to allow a mechanism for removing a previously

scheduled function from the Scheduler. The scheduled function to be removed *MUST*

match the input parameters to this function (namely the scheduled function itself AND

the context parameter that was specified when the function was added to the scheduler).

Prototype:

void BTPSAPI BTPS_DeleteFunctionFromScheduler(

BTPS_SchedulerFunction_t SchedulerFunction, void *SchedulerParameter);

Parameters:

SchedulerFunction Function to delete from the Scheduler.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 9 of 26

SchedulerParameter Caller specified context parameter that was specified when the

function was added to the Scheduler.

Return:

TRUE (non-zero) if function added successfully.

FALSE (zero) if an error occurred.

BTPS_ExecuteScheduler .

The following function begins execution of the actual Scheduler. Once this function is

called, it NEVER returns. This function is responsible for executing all functions that

have been added to the Scheduler with the BTPS_AddFunctionToScheduler() function.

Prototype:

void BTPSAPI BTPS_ExecuteScheduler(void)

Parameters:

Return:

BTPS_ProcessScheduler .

The following function is provided to allow a mechanism to process the scheduled

functions in the scheduler. This function performs the same functionality as the

BTPS_ExecuteScheduler() function except that it returns as soon as it has made a single

iteration through all the scheduled functions. This function is provided for platforms that

would like to implement their own processing loop and/or scheduler and not rely on the

Bluetopia implementation via the BTPS_ExecuteScheduler() function which does not

return.

Notes:

This function should NEVER be called if the BTPS_ExecuteScheduler() schema is

used.

Calling this function does not guarantee that all scheduled functions will be called, it will

only call the scheduled functions that are scheduled to run (based on their

Prototype:

void BTPSAPI BTPS_ProcessScheduler(void)

Parameters:

Return:

BTPS_AllocateMemory .

The following function is provided to allow a mechanism to actually allocate a block of

memory (of at least the specified size). The memory can later be returned to the system

by calling the BTPS_FreeMemory() function.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 10 of 26

Prototype:

void *BTPSAPI BTPS_AllocateMemory(unsigned int MemorySize)

Parameters:

MemorySize The size (in Bytes) of the block of memory to be allocated.

Return:

NON-NULL pointer to this memory buffer if the memory was successfully allocated.

NULL pointer if the memory could not be allocated.

BTPS_FreeMemory .

The following function is responsible for de-allocating a block of memory that was

successfully allocated with the BTPS_AllocateMemory() function. After this function

completes the caller CANNOT use ANY of the memory pointed to by the memory

pointer specified in this the call to this function.

Prototype:

void BTPSAPI BTPS_FreeMemory(void *MemoryPointer)

Parameters:

MemoryPointer A NON-NULL memory pointer which was returned from the

BTPS_AllocateMemory() function.

Return:

BTPS_MemCopy .

The following function is responsible for copying a block of memory of the specified size

from the specified source pointer to the specified destination memory pointer. The

source and destination memory buffers must contain AT LEAST as many bytes as

specified by the Size parameter. This function does not allow the overlapping of the

Source and Destination Buffers.

Prototype:

void BTPSAPI BTPS_MemCopy(void *Destination, void *Source, unsigned int Size)

Parameters:

Destination A pointer to the memory block that is to be destination buffer.

Source A pointer to the source memory block that points to the data to

be copied into the destination buffer.

Size The size, in bytes, of the data to copy.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 11 of 26

Return:

BTPS_MemMove .

The following function is responsible for copying a block of memory of the specified size

from the specified source pointer to the specified destination memory pointer. The

source and destination memory buffers must contain AT LEAST as many bytes as

specified by the Size parameter. This function DOES allow the overlapping of the

Source and Destination Buffers.

Prototype:

void BTPSAPI BTPS_MemCopy(void *Destination, void *Source, unsigned int Size)

Parameters:

Destination A pointer to the memory block that is to be destination buffer.

Source A pointer to the source memory block that points to the data to

be copied into the destination buffer.

Size The size, in bytes, of the data to copy.

Return:

BTPS_MemInitialize .

The following function is provided to allow a mechanism to fill a block of memory with

the specified value. The destination buffer must point to a buffer that is AT LEAST the

size of the Size parameter.

Prototype:

void BTPSAPI BTPS_MemInitialize(void *Destination, unsigned char Value,

unsigned int Size)

Parameters:

Destination A pointer to the data buffer that is to be filled with the

specified value.

Value The value that is to be filled into the data buffer.

Size The number of bytes that are to be filled in the data buffer.

Return:

BTPS_MemCompare .

The following function is provided to allow a mechanism to compare two blocks of

memory to see if the two memory blocks (each of the size specified by the Size parameter

(in bytes)) are equal (each and every byte up to Size bytes).

Prototype:

int BTPSAPI BTPS_MemCompare(void *Source1, void *Source2, unsigned int Size)

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 12 of 26

Parameters:

Source1 A pointer to the first block of memory to be compared.

Source2 A pointer to the second block of memory to be compared.

Size Number of bytes to compare

Return:

Negative value if Source1 is less than Source2.

Zero if Source1 equals Source2.

Positive value if Source1 is greater than Source2.

BTPS_MemCompareI .

The following function is provided to allow a mechanism to compare two blocks of

memory to see if the two memory blocks (each of the size specified by the Size parameter

(in bytes)) are equal (each and every byte up to Size bytes) using a case-insensitive

compare.

Prototype:

int BTPSAPI BTPS_MemCompareI(void *Source1, void *Source2, unsigned int Size)

Parameters:

Source1 A pointer to the first block of memory to be compared.

Source2 A pointer to the second block of memory to be compared.

Size Number of bytes to compare

Return:

Negative value if Source1 is less than Source2.

Zero if Source1 equals Source2.

Positive value if Source1 is greater than Source2.

BTPS_StringCopy .

The following function is provided to allow a mechanism to copy a source NULL

terminated ASCII (character) string to the specified destination string buffer. This

function copies the string byte by byte from the source to the destination (including the

NULL terminator).

Prototype:

void BTPSAPI BTPS_StringCopy(char *Destination, char *Source)

Parameters:

Destination A pointer to a buffer that is to receive the NULL terminated

ASCII string pointed to by the Source parameter

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 13 of 26

Source A pointer to a NULL Terminated ASCII string source buffer

that is copied into the buffer pointed to by the destination

parameter.

Return:

BTPS_StringLength .

The following function is provided to allow a mechanism to determine the length (in

character bytes) of the specified NULL terminated ASCII (character) string.

Prototype:

unsigned int BTPSAPI BTPS_StringLength(char *Source)

Parameters:

Source A pointer to a NULL terminated ASCII string.

Return:

The number of characters present in the string (NOT including the terminating NULL

character)

BTPS_SprintF .

The following MACRO definition is provided to allow a mechanism for a C Run-Time

Library sprintf() function implementation. This MACRO could be redefined as a

function (like the rest of the functions in this file), however more code would be required

to implement the variable number of arguments and formatting code then it would be to

simply call the C Run-Time Library sprintf() function. It is simply provided here as a

MACRO mapping to allow an easy means for a starting place to port this file to other

operating systems/platforms.

Prototype:

#define BTPS_SprintF sprintf

Parameters:

Return:

The number of characters that were written into the output string (not counting the NULL

terminator).

BTPS_CreateMailbox .

The following function is provided to allow a mechanism to create a Mailbox. A

Mailbox is a data store that contains slots (all of the same size) that can have data placed

into so that the data can be retrieved at a future time. Once data is placed into a Mailbox

(via the BTPS_AddMailbox() function), it can be retrieved by using the

BTPS_WaitMailbox() function. Data placed into the Mailbox is retrieved in a first in

first out (FIFO) method.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 14 of 26

Prototype:

Mailbox_t BTPSAPI BTPS_CreateMailbox(unsigned int NumberSlots,

unsigned int SlotSize)

Parameters:

NumberSlots The maximum number of slots that will be present in the

Mailbox.

SlotSize Size of each of the slots, in bytes.

Return:

NON-NULL Mailbox Handle if the Mailbox is successfully created.

NULL Mailbox Handle if the Mailbox was unable to be created.

BTPS_AddMailbox .

The following function is provided to allow a means to add data to the Mailbox (where it

can be retrieved via the BTPS_WaitMailbox() function. The MailboxData pointer

MUST point to a data buffer that is AT LEAST the size (in bytes) of a single Slot in the

Mailbox (specified when the Mailbox was created) and this pointer CANNOT be NULL.

The data that the MailboxData pointer points to is placed into the Mailbox where it can

be retrieved via the BTPS_WaitMailbox() function. This function copies from the

MailboxData Pointer the first SlotSize bytes. The slot size was specified when the

Mailbox was created via a successful call to the BTPS_CreateMailbox() function.

Prototype:

Boolean_t BTPSAPI BTPS_AddMailbox(Mailbox_t Mailbox, void *MailboxData)

Parameters:

Mailbox Mailbox Handle of the Mailbox to place the data into.

MailboxData A pointer to a buffer that contains the data to be added.

Return:

TRUE (non-zero) if successful.

FALSE (zero) if an error occurred.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 15 of 26

BTPS_WaitMailbox .

The following function is provided to allow a means to retrieve data from the specified

Mailbox. This function will return immediately if either data is placed in the Mailbox or

there is no data present in the Mailbox. The MailboxData pointer points to a data buffer

that is AT LEAST the size of a single Slot of the Mailbox (specified when the

BTPS_CreateMailbox() function was called). The MailboxData parameter CANNOT

be NULL. If this function returns TRUE then the first SlotSize bytes of the MailboxData

pointer will contain the data that was retrieved from the Mailbox. This function copies to

the MailboxData Pointer the data that is present in the Mailbox Slot (of size SlotSize).

The slot size was specified when the Mailbox was created via a successful call to the

BTPS_CreateMailbox() function.

Prototype:

Boolean_t BTPSAPI BTPS_WaitMailbox(Mailbox_t Mailbox, void *MailboxData)

Parameters:

Mailbox Mailbox Handle that represents the Mailbox to be used to wait

for the data.

MailboxData Pointer to a data buffer that is AT LEAST the size of a single

Slot of the Mailbox (specified when the

BTPS_CreateMailbox() function was called).

Return:

TRUE (non-zero) if data was successfully retrieved from the Mailbox.

FALSE (zero) if there was no Data retrieved from the Mailbox.

BTPS_QueryMailbox .

The following function is provided to allow a mechanism to determine if there is

currently any data queued in a mailbox.

Prototype:

Boolean_t BTPSAPI BTPS_QueryMailbox(Mailbox_t Mailbox)

Parameters:

Mailbox Mailbox Handle that represents the Mailbox that is to be

queried.

Return:

TRUE (non-zero) if there is data currently available in the Mailbox.

FALSE (zero) if there was no data currently available in the Mailbox.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 16 of 26

BTPS_DeleteMailbox .

The following function is responsible for destroying a Mailbox that was created

successfully via a successful call to the BTPS_CreateMailbox() function. Once this

function is completed the Mailbox Handle is NO longer valid and CANNOT be used.

Prototype:

void BTPSAPI BTPS_DeleteMailbox(Mailbox_t Mailbox)

Parameters:

Mailbox Mailbox Handle of the Mailbox to destroy.

Return:

BTPS_Init .

This optional function allows for any initialization code specific to a platform.

Prototype:

void BTPSAPI BTPS_Init(void *UserParam)

Parameters:

UserParam Any user required parameter to facilitate system specific

initialization.

Return:

BTPS_DeInit .

This optional function allows for any de-initialization code specific to a platform.

Prototype:

void BTPSAPI BTPS_DeInit(void)

Parameters:

None

Return:

BTPS_OutputMessage .

This optional function allows support for displaying or storing in a file support or

debugging information during run-time. A null function must be implemented to support

correct operation.

Prototype:

void BTPSAPI BTPS_ OutputMessage(char *DebugString, ...)

Parameters:

DebugString Character string with optional additional arguments to create a

text string for display.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 17 of 26

Return:

BTPS_SetDebugMask .

This optional function allows support for control of displaying or storing support or

debugging information during run-time with different levels of detail. A null function

must be implemented to support correct operation.

Prototype:

void BTPSAPI BTPS_SetDebugMask (unsigned long DebugMask)

Parameters:

DebugMask Bit Mask used to control which Debug messages are displayed.

Return:

BTPS_TestDebugZone .

This optional function allows support to determine if a specific execution zone is

currently enabled for debugging. A null function must be implemented to support correct

operation.

Prototype:

void BTPSAPI BTPS_TestDebugZone (unsigned long Zone)

Parameters:

Zone Bit Mask used to check if a zone is enabled for displaying

messages.

Return:

BTPS_DumpData .

This optional function allows displaying binary data in a memory dump format, if the

optional display functions are implemented, and if the specific code zones are enabled

enabled for debugging. A null function must be implemented to support correct

operation.

Prototype:

void BTPSAPI BTPS_DumpData (unsigned int DataLength, unsigned char *DataPtr)

Parameters:

DataLength The length of data to be formatted for display.

DataPtr A pointer to the data to be formatted for display.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 18 of 26

Return:

2.2 BTPS Kernel Scheduled Function Prototype

The BTPS kernel allows for functions to be scheduled. Below is the prototype for all scheduled

functions. This function will be the function that is called from the scheduler periodically. The

period at which the scheduled function is called is specified by the programmer when the

function is scheduled via the BTPS_AddFunctionToScheduler() function.

BTPS_SchedulerFunction_t .

Prototype of function to be added to the scheduler.

Prototype:

void (BTPSAPI *BTPS_SchedulerFunction_t)(void *ScheduleParameter);

Parameters:

Return:

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 19 of 26

3. 3. File Distributions

The header filse that are distributed with the Bluetooth Protocol Stack Kernel Library is listed in

the table below.

File Contents/Description

BTPSKRNL.h Bluetooth Protocol Stack Kernel include file.

BKRNLAPI.h Actual Bluetooth Protocol Stack Kernel API definitions file.

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 20 of 26

3. Bluetooth/Kernel Interface Header File

/*****< bkrnlapi.h >***/

/* Copyright 2000 - 2012 Stonestreet One. */

/* All Rights Reserved. */

/* */

/* BKRNLAPI - Stonestreet One Bluetooth Stack Kernel API Type Definitions, */

/* Constants, and Prototypes. */

/* */

/* Author: Damon Lange */

/* */

/*** MODIFICATION HISTORY ***/

/* */

/* mm/dd/yy F. Lastname Description of Modification */

/* -------- ----------- --*/

/* 05/30/01 D. Lange Initial creation. */

/**/

#ifndef __BKRNLAPIH__

#define __BKRNLAPIH__

#include <stdio.h> /* sprintf() prototype. */

#include "BTAPITyp.h" /* Bluetooth API Type Definitions. */

#include "BTTypes.h" /* Bluetooth basic type definitions */

 /* Miscellaneous Type definitions that should already be defined, */

 /* but are necessary. */

#ifndef NULL

 #define NULL ((void *)0)

#endif

#ifndef TRUE

 #define TRUE (1 == 1)

#endif

#ifndef FALSE

 #define FALSE (0 == 1)

#endif

 /* The following preprocessor definitions control the inclusion of */

 /* debugging output. */

 /* */

 /* - DEBUG_ENABLED */

 /* - When defined enables debugging, if no other debugging */

 /* preprocessor definitions are defined then the debugging */

 /* output is logged to a file (and included in the */

 /* driver). */

 /* */

 /* - DEBUG_ZONES */

 /* - When defined (only when DEBUG_ENABLED is defined) */

 /* forces the value of this definition (unsigned long)*/

 /* to be the Debug Zones that are enabled. */

#define DBG_ZONE_CRITICAL_ERROR (1 << 0)

#define DBG_ZONE_ENTER_EXIT (1 << 1)

#define DBG_ZONE_BTPSKRNL (1 << 2)

#define DBG_ZONE_GENERAL (1 << 3)

#define DBG_ZONE_DEVELOPMENT (1 << 4)

#define DBG_ZONE_SHA (1 << 5)

#define DBG_ZONE_BCSP (1 << 6)

#define DBG_ZONE_VENDOR (1 << 7)

#define DBG_ZONE_ANY ((unsigned long)-1)

#ifndef DEBUG_ZONES

 #define DEBUG_ZONES DBG_ZONE_CRITICAL_ERROR

#endif

#ifndef MAX_DBG_DUMP_BYTES

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 21 of 26

 #define MAX_DBG_DUMP_BYTES (((unsigned int)-1) - 1)

#endif

#ifdef DEBUG_ENABLED

 #define DBG_MSG(_zone_, _x_) do { if(BTPS_TestDebugZone(_zone_)) BTPS_OutputMessage

x; } while(0)

 #define DBG_DUMP(_zone_, _x_) do { if(BTPS_TestDebugZone(_zone_)) BTPS_DumpData _x_;

} while(0)

#else

 #define DBG_MSG(_zone_, _x_)

 #define DBG_DUMP(_zone_, _x_)

#endif

 /* The following type definition defines a BTPS Kernel API Mailbox */

 /* Handle. */

typedef void *Mailbox_t;

 /* The following MACRO is a utility MACRO that exists to calculate */

 /* the offset position of a particular structure member from the */

 /* start of the structure. This MACRO accepts as the first */

 /* parameter, the physical name of the structure (the type name, NOT */

 /* the variable name). The second parameter to this MACRO represents*/

 /* the actual structure member that the offset is to be determined. */

 /* This MACRO returns an unsigned integer that represents the offset */

 /* (in bytes) of the structure member. */

#define BTPS_STRUCTURE_OFFSET(_x, _y) ((unsigned int)&(((_x *)0)->_y))

 /* The following type declaration represents the Prototype for a */

 /* Scheduler Function. This function represents the Function that */

 /* will be executed periodically when passed to the */

 /* BTPS_AddFunctionToScheduler() function. */

 /* * NOTE * The ScheduleParameter is the same parameter value that */

 /* was passed to the BTPS_AddFunctionToScheduler() when */

 /* the function was added to the scheduler. */

 /* * NOTE * Once a Function is added to the Scheduler there is NO */

 /* way to remove it. */

typedef void (BTPSAPI *BTPS_SchedulerFunction_t)(void *ScheduleParameter);

 /* The following function is responsible for delaying the current */

 /* task for the specified duration (specified in Milliseconds). */

 /* * NOTE * Very small timeouts might be smaller in granularity than */

 /* the system can support !!!! */

BTPSAPI_DECLARATION void BTPSAPI BTPS_Delay(unsigned long MilliSeconds);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_Delay_t)(unsigned long MilliSeconds);

#endif

 /* The following function is responsible for retrieving the current */

 /* Tick Count of system. This function returns the System Tick */

 /* Count in Milliseconds resolution. */

BTPSAPI_DECLARATION unsigned long BTPSAPI BTPS_GetTickCount(void);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef unsigned long (BTPSAPI *PFN_BTPS_GetTickCount_t)(void);

#endif

 /* The following function is provided to allow a mechanism for */

 /* adding Scheduler Functions to the Scheduler. These functions are */

 /* called periodically by the Scheduler (based upon the requested */

 /* Schedule Period). This function accepts as input the Scheduler */

 /* Function to add to the Scheduler, the Scheduler parameter that is */

 /* passed to the Scheduled function, and the Scheduler Period. The */

 /* Scheduler Period is specified in Milliseconds. This function */

 /* returns TRUE if the function was added successfully or FALSE if */

 /* there was an error. */

 /* * NOTE * Once a function is added to the Scheduler, it can only */

 /* be removed by calling the */

 /* BTPS_DeleteFunctionFromScheduler() function. */

 /* * NOTE * The BTPS_ExecuteScheduler() function *MUST* be called */

 /* ONCE (AND ONLY ONCE) to begin the Scheduler Executing */

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 22 of 26

 /* periodic Scheduled functions. */

BTPSAPI_DECLARATION Boolean_t BTPSAPI BTPS_AddFunctionToScheduler(BTPS_SchedulerFunction_t

SchedulerFunction, void *SchedulerParameter, unsigned int Period);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef Boolean_t (BTPSAPI *PFN_BTPS_AddFunctionToScheduler_t)(BTPS_SchedulerFunction_t

SchedulerFunction, void *SchedulerParameter, unsigned int Period);

#endif

 /* The following function is provided to allow a mechanism for */

 /* deleting a Function that has previously been registered with the */

 /* Scheduler via a successful call to the */

 /* BTPS_AddFunctionToScheduler() function. This function accepts as */

 /* input the Scheduler Function to that was added to the Scheduler, */

 /* as well as the Scheduler Parameter that was registered. Both of */

 /* these values *must* match to remove a specific Scheduler Entry. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_DeleteFunctionFromScheduler(BTPS_SchedulerFunction_t

SchedulerFunction, void *SchedulerParameter);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_DeleteFunctionFromScheduler_t)(BTPS_SchedulerFunction_t

SchedulerFunction, void *SchedulerParameter);

#endif

 /* The following function begins execution of the actual Scheduler. */

 /* Once this function is called, it NEVER returns. This function is */

 /* responsible for executing all functions that have been added to */

 /* the Scheduler with the BTPS_AddFunctionToScheduler() function. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_ExecuteScheduler(void);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_ExecuteScheduler_t)(void);

#endif

 /* The following function is provided to allow a mechanism to process*/

 /* the scheduled functions in the scheduler. This function performs */

 /* the same functionality as the BTPS_ExecuteScheduler() function */

 /* except that it returns as soon as it has made an iteration through*/

 /* the scheduled functions. This function is provided for platforms */

 /* that would like to implement their own processing loop and/or */

 /* scheduler and not rely on the Bluetopia implementation. */

 /* * NOTE * This function should NEVER be called if the */

 /* BTPS_ExecuteScheduler() schema is used. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_ProcessScheduler(void);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_ProcessScheduler_t)(void);

#endif

 /* The following function is provided to allow a mechanism to */

 /* actually allocate a Block of Memory (of at least the specified */

 /* size). This function accepts as input the size (in Bytes) of the */

 /* Block of Memory to be allocated. This function returns a NON-NULL*/

 /* pointer to this Memory Buffer if the Memory was successfully */

 /* allocated, or a NULL value if the memory could not be allocated. */

BTPSAPI_DECLARATION void *BTPSAPI BTPS_AllocateMemory(unsigned long MemorySize);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void *(BTPSAPI *PFN_BTPS_AllocateMemory_t)(unsigned long MemorySize);

#endif

 /* The following function is responsible for de-allocating a Block */

 /* of Memory that was successfully allocated with the */

 /* BTPS_AllocateMemory() function. This function accepts a NON-NULL */

 /* Memory Pointer which was returned from the BTPS_AllocateMemory() */

 /* function. After this function completes the caller CANNOT use */

 /* ANY of the Memory pointed to by the Memory Pointer. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_FreeMemory(void *MemoryPointer);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_FreeMemory_t)(void *MemoryPointer);

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 23 of 26

#endif

 /* The following function is responsible for copying a block of */

 /* memory of the specified size from the specified source pointer */

 /* to the specified destination memory pointer. This function */

 /* accepts as input a pointer to the memory block that is to be */

 /* Destination Buffer (first parameter), a pointer to memory block */

 /* that points to the data to be copied into the destination buffer, */

 /* and the size (in bytes) of the Data to copy. The Source and */

 /* Destination Memory Buffers must contain AT LEAST as many bytes */

 /* as specified by the Size parameter. */

 /* * NOTE * This function does not allow the overlapping of the */

 /* Source and Destination Buffers !!!! */

BTPSAPI_DECLARATION void BTPSAPI BTPS_MemCopy(void *Destination, BTPSCONST void *Source, unsigned

long Size);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_MemCopy_t)(void *Destination, BTPSCONST void *Source, unsigned

long Size);

#endif

 /* The following function is responsible for moving a block of */

 /* memory of the specified size from the specified source pointer */

 /* to the specified destination memory pointer. This function */

 /* accepts as input a pointer to the memory block that is to be */

 /* Destination Buffer (first parameter), a pointer to memory block */

 /* that points to the data to be copied into the destination buffer, */

 /* and the size (in bytes) of the Data to copy. The Source and */

 /* Destination Memory Buffers must contain AT LEAST as many bytes */

 /* as specified by the Size parameter. */

 /* * NOTE * This function DOES allow the overlapping of the */

 /* Source and Destination Buffers. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_MemMove(void *Destination, BTPSCONST void *Source, unsigned

long Size);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_MemMove_t)(void *Destination, BTPSCONST void *Source, unsigned

long Size);

#endif

 /* The following function is provided to allow a mechanism to fill */

 /* a block of memory with the specified value. This function accepts*/

 /* as input a pointer to the Data Buffer (first parameter) that is */

 /* to filled with the specified value (second parameter). The */

 /* final parameter to this function specifies the number of bytes */

 /* that are to be filled in the Data Buffer. The Destination */

 /* Buffer must point to a Buffer that is AT LEAST the size of */

 /* the Size parameter. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_MemInitialize(void *Destination, unsigned char Value,

unsigned long Size);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_MemInitialize_t)(void *Destination, unsigned char Value,

unsigned long Size);

#endif

 /* The following function is provided to allow a mechanism to */

 /* Compare two blocks of memory to see if the two memory blocks */

 /* (each of size Size (in bytes)) are equal (each and every byte up */

 /* to Size bytes). This function returns a negative number if */

 /* Source1 is less than Source2, zero if Source1 equals Source2, and */

 /* a positive value if Source1 is greater than Source2. */

BTPSAPI_DECLARATION int BTPSAPI BTPS_MemCompare(BTPSCONST void *Source1, BTPSCONST void *Source2,

unsigned long Size);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef int (BTPSAPI *PFN_BTPS_MemCompare_t)(BTPSCONST void *Source1, BTPSCONST void *Source2,

unsigned long Size);

#endif

 /* The following function is provided to allow a mechanism to Compare*/

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 24 of 26

 /* two blocks of memory to see if the two memory blocks (each of size*/

 /* Size (in bytes)) are equal (each and every byte up to Size bytes) */

 /* using a Case-Insensitive Compare. This function returns a */

 /* negative number if Source1 is less than Source2, zero if Source1 */

 /* equals Source2, and a positive value if Source1 is greater than */

 /* Source2. */

BTPSAPI_DECLARATION int BTPSAPI BTPS_MemCompareI(BTPSCONST void *Source1, BTPSCONST void

*Source2, unsigned long Size);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef int (BTPSAPI *PFN_BTPS_MemCompareI_t)(BTPSCONST void *Source1, BTPSCONST void

*Source2, unsigned int Size);

#endif

 /* The following function is provided to allow a mechanism to */

 /* copy a source NULL Terminated ASCII (character) String to the */

 /* specified Destination String Buffer. This function accepts as */

 /* input a pointer to a buffer (Destination) that is to receive the */

 /* NULL Terminated ASCII String pointed to by the Source parameter. */

 /* This function copies the string byte by byte from the Source */

 /* to the Destination (including the NULL terminator). */

BTPSAPI_DECLARATION void BTPSAPI BTPS_StringCopy(char *Destination, BTPSCONST char *Source);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_StringCopy_t)(char *Destination, BTPSCONST char *Source);

#endif

 /* The following function is provided to allow a mechanism to */

 /* determine the Length (in characters) of the specified NULL */

 /* Terminated ASCII (character) String. This function accepts as */

 /* input a pointer to a NULL Terminated ASCII String and returns */

 /* the number of characters present in the string (NOT including */

 /* the terminating NULL character). */

BTPSAPI_DECLARATION unsigned int BTPSAPI BTPS_StringLength(BTPSCONST char *Source);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef unsigned int (BTPSAPI *PFN_BTPS_StringLength_t)(BTPSCONST char *Source);

#endif

 /* The following MACRO definition is provided to allow a mechanism */

 /* for a C Run-Time Library sprintf() function implementation. This */

 /* MACRO could be redefined as a function (like the rest of the */

 /* functions in this file), however more code would be required to */

 /* implement the variable number of arguments and formatting code */

 /* then it would be to simply call the C Run-Time Library sprintf() */

 /* function. It is simply provided here as a MACRO mapping to allow */

 /* an easy means for a starting place to port this file to other */

 /* operating systems/platforms. */

#define BTPS_SprintF sprintf

 /* The following function is provided to allow a mechanism to create */

 /* a Mailbox. A Mailbox is a Data Store that contains slots (all */

 /* of the same size) that can have data placed into (and retrieved */

 /* from). Once Data is placed into a Mailbox (via the */

 /* BTPS_AddMailbox() function, it can be retreived by using the */

 /* BTPS_WaitMailbox() function. Data placed into the Mailbox is */

 /* retrieved in a FIFO method. This function accepts as input the */

 /* Maximum Number of Slots that will be present in the Mailbox and */

 /* the Size of each of the Slots. This function returns a NON-NULL */

 /* Mailbox Handle if the Mailbox is successfully created, or a */

 /* NULL Mailbox Handle if the Mailbox was unable to be created. */

BTPSAPI_DECLARATION Mailbox_t BTPSAPI BTPS_CreateMailbox(unsigned int NumberSlots, unsigned int

SlotSize);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef Mailbox_t (BTPSAPI *PFN_BTPS_CreateMailbox_t)(unsigned int NumberSlots, unsigned int

SlotSize);

#endif

 /* The following function is provided to allow a means to Add data */

 /* to the Mailbox (where it can be retrieved via the */

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 25 of 26

 /* BTPS_WaitMailbox() function. This function accepts as input the */

 /* Mailbox Handle of the Mailbox to place the data into and a */

 /* pointer to a buffer that contains the data to be added. This */

 /* pointer *MUST* point to a data buffer that is AT LEAST the Size */

 /* of the Slots in the Mailbox (specified when the Mailbox was */

 /* created) and this pointer CANNOT be NULL. The data that the */

 /* MailboxData pointer points to is placed into the Mailbox where it */

 /* can be retrieved via the BTPS_WaitMailbox() function. */

 /* * NOTE * This function copies from the MailboxData Pointer the */

 /* first SlotSize Bytes. The SlotSize was specified when */

 /* the Mailbox was created via a successful call to the */

 /* BTPS_CreateMailbox() function. */

BTPSAPI_DECLARATION Boolean_t BTPSAPI BTPS_AddMailbox(Mailbox_t Mailbox, void *MailboxData);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef Boolean_t (BTPSAPI *PFN_BTPS_AddMailbox_t)(Mailbox_t Mailbox, void *MailboxData);

#endif

 /* The following function is provided to allow a means to retrieve */

 /* data from the specified Mailbox. This function will block until */

 /* either Data is placed in the Mailbox or an error with the Mailbox */

 /* was detected. This function accepts as its first parameter a */

 /* Mailbox Handle that represents the Mailbox to wait for the data */

 /* with. This function accepts as its second parameter, a pointer */

 /* to a data buffer that is AT LEAST the size of a single Slot of */

 /* the Mailbox (specified when the BTPS_CreateMailbox() function */

 /* was called). The MailboxData parameter CANNOT be NULL. This */

 /* function will return TRUE if data was successfully retrieved */

 /* from the Mailbox or FALSE if there was an error retrieving data */

 /* from the Mailbox. If this function returns TRUE then the first */

 /* SlotSize bytes of the MailboxData pointer will contain the data */

 /* that was retrieved from the Mailbox. */

 /* * NOTE * This function copies to the MailboxData Pointer the */

 /* data that is present in the Mailbox Slot (of size */

 /* SlotSize). The SlotSize was specified when the Mailbox */

 /* was created via a successful call to the */

 /* BTPS_CreateMailbox() function. */

BTPSAPI_DECLARATION Boolean_t BTPSAPI BTPS_WaitMailbox(Mailbox_t Mailbox, void *MailboxData);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef Boolean_t (BTPSAPI *PFN_BTPS_WaitMailbox_t)(Mailbox_t Mailbox, void *MailboxData);

#endif

 /* The following function is a utility function that exists to */

 /* determine if there is anything queued in the specified Mailbox. */

 /* This function returns TRUE if there is something queued in the */

 /* Mailbox, or FALSE if there is nothing queued in the specified */

 /* Mailbox. */

Boolean_t BTPSAPI BTPS_QueryMailbox(Mailbox_t Mailbox);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef Boolean_t (BTPSAPI *PFN_BTPS_QueryMailbox_t)(Mailbox_t Mailbox);

#endif

 /* The following function is responsible for destroying a Mailbox */

 /* that was created successfully via a successful call to the */

 /* BTPS_CreateMailbox() function. This function accepts as input */

 /* the Mailbox Handle of the Mailbox to destroy. Once this function */

 /* is completed the Mailbox Handle is NO longer valid and CANNOT be */

 /* used. Calling this function will cause all outstanding */

 /* BTPS_WaitMailbox() functions to fail with an error. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_DeleteMailbox(Mailbox_t Mailbox);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_DeleteMailbox_t)(Mailbox_t Mailbox);

#endif

 /* The following function is used to initialize the Platform module. */

 /* The Platform module relies on some static variables that are used */

 /* to coordinate the abstraction. When the module is initially */

 /* started from a cold boot, all variables are set to the proper */

Bluetopia
®
 Kernel API Reference Manual Release 4.0.1

Stonestreet One Page 26 of 26

 /* state. If the Warm Boot is required, then these variables need to*/

 /* be reset to their default values. This function sets all static */

 /* parameters to their default values. */

 /* * NOTE * The implementation is free to pass whatever information */

 /* required in this parameter. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_Init(void *UserParam);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_Init_t)(void *UserParam);

#endif

 /* The following function is used to cleanup the Platform module. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_DeInit(void);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_DeInit_t)(void);

#endif

 /* Write out the specified NULL terminated Debugging String to the */

 /* Debug output. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_OutputMessage(BTPSCONST char *DebugString, ...);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_OutputMessage_t)(BTPSCONST char *DebugString, ...);

#endif

 /* The following function is used to set the Debug Mask that controls*/

 /* which debug zone messages get displayed. The function takes as */

 /* its only parameter the Debug Mask value that is to be used. Each */

 /* bit in the mask corresponds to a debug zone. When a bit is set, */

 /* the printing of that debug zone is enabled. */

BTPSAPI_DECLARATION void BTPSAPI BTPS_SetDebugMask(unsigned long DebugMask);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef void (BTPSAPI *PFN_BTPS_SetDebugMask_t)(unsigned long DebugMask);

#endif

 /* The following function is a utility function that can be used to */

 /* determine if a specified Zone is currently enabled for debugging. */

BTPSAPI_DECLARATION int BTPSAPI BTPS_TestDebugZone(unsigned long Zone);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef int (BTPSAPI *PFN_BTPS_TestDebugZone_t)(unsigned long Zone);

#endif

 /* The following function is responsible for writing binary debug */

 /* data to the specified debug file handle. The first parameter to */

 /* this function is the handle of the open debug file to write the */

 /* debug data to. The second parameter to this function is the */

 /* length of binary data pointed to by the next parameter. The final*/

 /* parameter to this function is a pointer to the binary data to be */

 /* written to the debug file. */

BTPSAPI_DECLARATION int BTPSAPI BTPS_DumpData(unsigned int DataLength, BTPSCONST unsigned char

*DataPtr);

#ifdef INCLUDE_BLUETOOTH_API_PROTOTYPES

 typedef int (BTPSAPI *PFN_BTPS_DumpData_t)(unsigned int DataLength, BTPSCONST unsigned char

*DataPtr);

#endif

#endif

	1. Introduction
	1.1 Scope
	1.2 Acronyms and Abbreviations

	2. Bluetooth Protocol Stack Kernel Programming Interface
	2.1 Bluetooth Protocol Stack Kernel Commands
	BTPS_Delay .
	BTPS_GetTickCount .
	BTPS_AddFunctionToScheduler .
	BTPS_DeleteFunctionFromScheduler .
	BTPS_ExecuteScheduler .
	BTPS_ProcessScheduler .
	BTPS_AllocateMemory .
	BTPS_FreeMemory .
	BTPS_MemCopy .
	BTPS_MemMove .
	BTPS_MemInitialize .
	BTPS_MemCompare .
	BTPS_MemCompareI .
	BTPS_StringCopy .
	BTPS_StringLength .
	BTPS_SprintF .
	BTPS_CreateMailbox .
	BTPS_AddMailbox .
	BTPS_WaitMailbox .
	BTPS_QueryMailbox .
	BTPS_DeleteMailbox .
	BTPS_Init .
	BTPS_DeInit .
	BTPS_OutputMessage .
	BTPS_SetDebugMask .
	BTPS_TestDebugZone .
	BTPS_DumpData .

	2.2 BTPS Kernel Scheduled Function Prototype
	BTPS_SchedulerFunction_t .

	3. 3. File Distributions
	3. Bluetooth/Kernel Interface Header File

