
Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One January 10, 2014

Bluetooth
TM

 Protocol Stack

Application Programming Interface

Reference Manual

Protocol Version: 4.0

Release: 4.0.1
January 10, 2014

Louisville, KY www.stonestreetone.com

Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc., USA and licensed to Stonestreet One, LLC.
Bluetopia

®
, Stonestreet One

TM
, and the Stonestreet One logo are registered trademarks of Stonestreet One, LLC, Louisville,

Kentucky, USA. All other trademarks are property of their respective owners.
Copyright © 2000-2014 by Stonestreet One, LLC. All rights reserved.

http://www.stonestreetone.com/

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 2 of 737 January 10, 2014

 Table of Contents

1. INTRODUCTION.. 18

1.1 Scope ... 18

1.2 Applicable Documents ... 19

1.3 Acronyms and Abbreviations ... 21

2. STACK APPLICATION PROGRAMMING INTERFACE ... 24

2.1 BSC (Bluetooth Stack Controller) API .. 26

2.1.1 BSC CALLBACKS ... 27
BSC_Timer_Callback_t ... 27
BSC_Debug_Callback_t .. 27
BSC_Cleanup_Callback_t ... 28
BSC_Event_Callback_t ... 29
BSC_AsynchronousCallbackFunction_t ... 29

2.1.2 BSC COMMANDS ... 30
BSC_Initialize .. 31
BSC_Shutdown .. 34
BSC_RegisterDebugCallback .. 34
BSC_UnRegisterDebugCallback ... 35
BSC_RegisterEventCallback ... 35
BSC_UnRegisterEventCallback .. 36
BSC_LockBluetoothStack ... 37
BSC_UnLockBluetoothStack .. 37
BSC_StartTimer ... 38
BSC_StopTimer ... 39
BSC_AuthenticateDevice .. 39
BSC_EnableFeature ... 40
BSC_DisableFeature .. 41
BSC_QueryActiveFeatures .. 42
BSC_QueryStackIdle ... 43
BSC_ScheduleAsynchronousCallback .. 43
BSC_AcquireListLock ... 44
BSC_ReleaseListLock ... 44
BSC_AddGenericListEntry_Actual ... 45
BSC_AddGenericListEntry ... 46
BSC_SearchGenericListEntry ... 48
BSC_GetNextGenericListEntry ... 49
BSC_DeleteGenericListEntry .. 49
BSC_FreeGenericListEntryMemory ... 50
BSC_DeleteGenericListEntryList .. 51

2.2 HCI API .. 51
2.2.1 HCI Error Codes ... 52

2.2.2 LINK CONTROL COMMANDS ... 54
HCI_Inquiry ... 57

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 3 of 737 January 10, 2014

HCI_Inquiry_Cancel .. 58
HCI_Periodic_Inquiry_Mode .. 58
HCI_Exit_Periodic_Inquiry_Mode .. 59
HCI_Create_Connection .. 60
HCI_Disconnect ... 62
HCI_Add_SCO_Connection .. 63
HCI_Accept_Connection_Request .. 64
HCI_Reject_Connection_Request ... 65
HCI_Link_Key_Request_Reply .. 66
HCI_Link_Key_Request_Negative_Reply .. 66
HCI_PIN_Code_Request_Reply ... 67
HCI_PIN_Code_Request_Negative_Reply ... 68
HCI_Change_Connection_Packet_Type ... 69
HCI_Authentication_Requested .. 70
HCI_Set_Connection_Encryption ... 71
HCI_Change_Connection_Link_Key .. 72
HCI_Master_Link_Key ... 73
HCI_Remote_Name_Request .. 73
HCI_Read_Remote_Supported_Features .. 75
HCI_Read_Remote_Version_Information .. 75
HCI_Read_Clock_Offset ... 76
HCI_Create_Connection_Cancel ... 77
HCI_Remote_Name_Request_Cancel ... 78
HCI_Read_Remote_Extended_Features ... 78
HCI_Read_LMP_Handle ... 79
HCI_Setup_Synchronous_Connection .. 80
HCI_Accept_Synchronous_Connection_Request ... 83
HCI_Reject_Synchronous_Connection_Request .. 86
HCI_IO_Capability_Request_Reply ... 87
HCI_User_Confirmation_Request_Reply ... 88
HCI_User_Confirmation_Request_Negative_Reply ... 89
HCI_User_Passkey_Request_Reply .. 89
HCI_User_Passkey_Request_Negative_Reply ... 90
HCI_Remote_OOB_Data_Request_Reply .. 91
HCI_Remote_OOB_Data_Request_Negative_Reply ... 92
HCI_IO_Capability_Request_Negative_Reply ... 92
HCI_Create_Physical_Link ... 93
HCI_Accept_Physical_Link_Request ... 94
HCI_Disconnect_Physical_Link .. 96
HCI_Create_Logical_Link .. 97
HCI_Accept_Logical_Link .. 98
HCI_Disconnect_Logical_Link ... 99
HCI_Logical_Link_Cancel .. 99
HCI_Flow_Spec_Modify ... 100

2.2.3 LINK POLICY COMMANDS ... 101
HCI_Hold_Mode ... 102
HCI_Sniff_Mode ... 103
HCI_Exit_Sniff_Mode ... 104
HCI_Park_Mode .. 105
HCI_Exit_Park_Mode ... 106

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 4 of 737 January 10, 2014

HCI_QoS_Setup .. 106
HCI_Role_Discovery ... 107
HCI_Switch_Role .. 108
HCI_Read_Link_Policy_Settings .. 109
HCI_Write_Link_Policy_Settings ... 110
HCI_Read_Default_Link_Policy_Settings .. 111
HCI_Write_Default_Link_Policy_Settings ... 112
HCI_Flow_Specification ... 113
HCI_Sniff_Subrating ... 114

2.2.4 HOST CONTROLLER & BASEBAND COMMANDS .. 115
HCI_Set_Event_Mask ... 121
HCI_Reset .. 123
HCI_Set_Event_Filter.. 124
HCI_Flush .. 126
HCI_Read_PIN_Type .. 127
HCI_Write_PIN_Type ... 128
HCI_Create_New_Unit_Key ... 128
HCI_Read_Stored_Link_Key .. 129
HCI_Write_Stored_Link_Key ... 130
HCI_Delete_Stored_Link_Key .. 131
HCI_Change_Local_Name .. 132
HCI_Read_Local_Name .. 132
HCI_Read_Connection_Accept_Timeout ... 133
HCI_Write_Connection_Accept_Timeout .. 134
HCI_Read_Page_Timeout ... 135
HCI_Write_Page_Timeout .. 135
HCI_Read_Scan_Enable .. 136
HCI_Write_Scan_Enable ... 137
HCI_Read_Page_Scan_Activity .. 138
HCI_Write_Page_Scan_Activity ... 139
HCI_Read_Inquiry_Scan_Activity .. 140
HCI_Write_Inquiry_Scan_Activity ... 140
HCI_Read_Authentication_Enable .. 141
HCI_Write_Authentication_Enable ... 142
HCI_Read_Encryption_Mode ... 143
HCI_Write_Encryption_Mode .. 144
HCI_Read_Class_of_Device ... 145
HCI_Write_Class_of_Device .. 151
HCI_Read_Voice_Setting .. 151
HCI_Write_Voice_Setting ... 153
HCI_Read_Automatic_Flush_Timeout ... 154
HCI_Write_Automatic_Flush_Timeout .. 155
HCI_Read_Num_Broadcast_Retransmissions .. 156
HCI_Write_Num_Broadcast_Retransmissions ... 157
HCI_Read_Hold_Mode_Activity .. 158
HCI_Write_Hold_Mode_Activity ... 159
HCI_Read_Transmit_Power_Level ... 160
HCI_Read_SCO_Flow_Control_Enable ... 161
HCI_Write_SCO_Flow_Control_Enable .. 161
HCI_Set_Host_Controller_To_Host_Flow_Control ... 162

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 5 of 737 January 10, 2014

HCI_Host_Buffer_Size .. 163
HCI_Host_Number_Of_Completed_Packets .. 164
HCI_Read_Link_Supervision_Timeout .. 165
HCI_Write_Link_Supervision_Timeout ... 166
HCI_Read_Number_Of_Supported_IAC .. 167
HCI_Read_Current_IAC_LAP .. 168
HCI_Write_Current_IAC_LAP ... 169
HCI_Read_Page_Scan_Period_Mode ... 170
HCI_Write_Page_Scan_Period_Mode .. 170
HCI_Read_Page_Scan_Mode .. 171
HCI_Write_Page_Scan_Mode ... 172
HCI_Set_AFH_Host_Channel_Classification ... 173
HCI_Read_Inquiry_Scan_Type ... 174
HCI_Write_Inquiry_Scan_Type .. 175
HCI_Read_Inquiry_Mode ... 176
HCI_Write_Inquiry_Mode .. 176
HCI_Read_Page_Scan_Type ... 177
HCI_Write_Page_Scan_Type .. 178
HCI_Read_AFH_Channel_Assessment_Mode ... 179
HCI_Write_AFH_Channel_Assessment_Mode .. 179
HCI_Read_Extended_Inquiry_Response .. 180
HCI_Write_Extended_Inquiry_Response ... 181
HCI_Refresh_Encryption_Key .. 182
HCI_Read_Simple_Pairing_Mode .. 182
HCI_Write_Simple_Pairing_Mode ... 183
HCI_Read_Local_OOB_Data ... 184
HCI_Read_Inquiry_Response_Transmit_Power_Level .. 184
HCI_Write_Inquiry_Transmit_Power_Level .. 185
HCI_Send_Keypress_Notification... 186
HCI_Read_Default_Erroneous_Data_Reporting ... 187
HCI_Write_Default_Erroneous_Data_Reporting .. 187
HCI_Enhanced_Flush .. 188
HCI_Read_Logical_Link_Accept_Timeout .. 189
HCI_Write_Logical_Link_Accept_Timeout ... 189
HCI_Set_Event_Mask_Page_2 .. 190
HCI_Read_Location_Data ... 192
HCI_Write_Location_Data .. 193
HCI_Read_Flow_Control_Mode ... 194
HCI_Write_Flow_Control_Mode .. 195
HCI_Read_Enhanced_Transmit_Power_Level ... 195
HCI_Read_Best_Effort_Flush_Timeout ... 197
HCI_Write_Best_Effort_Flush_Timeout... 197
HCI_Short_Range_Mode .. 198
HCI_Read_LE_Host_Supported .. 199
HCI_Write_LE_Host_Supported ... 200

2.2.5 INFORMATIONAL PARAMETERS ... 201
HCI_Read_Local_Version_Information .. 202
HCI_Read_Local_Supported_Features ... 213
HCI_Read_Buffer_Size ... 216
HCI_Read_Country_Code ... 217

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 6 of 737 January 10, 2014

HCI_Read_BD_ADDR.. 218
HCI_Read_Local_Supported_Commands ... 219
HCI_Read_Local_Extended_Features ... 228
HCI_Read_Data_Block_Size .. 231

2.2.6 STATUS PARAMETERS ... 232
HCI_Read_Failed_Contact_Counter ... 233
HCI_Reset_Failed_Contact_Counter... 234
HCI_Get_Link_Quality ... 235
HCI_Read_RSSI .. 236
HCI_Read_AFH_Channel_Map .. 236
HCI_Read_Clock ... 237
HCI_Read_Encryption_Key_Size ... 239
HCI_Read_Local_AMP_Info .. 240
HCI_Read_Local_AMP_ASSOC .. 242
HCI_Write_Remote_AMP_ASSOC .. 244

2.2.7 TESTING COMMANDS .. 245
HCI_Read_Loopback_Mode ... 245
HCI_Write_Loopback_Mode .. 246
HCI_Enable_Device_Under_Test_Mode .. 247
HCI_Write_Simple_Pairing_Debug_Mode ... 248
HCI_Enable_AMP_Receiver_Reports .. 249
HCI_AMP_Test_End ... 250
HCI_AMP_Test_Command .. 250

2.2.8 LE CONTROLLER COMMANDS ... 251
HCI_LE_Set_Event_Mask .. 253
HCI_LE_Read_Buffer_Size .. 254
HCI_LE_Read_Local_Supported_Features... 255
HCI_LE_Set_Random_Address .. 256
HCI_LE_Set_Advertising_Parameters .. 257
HCI_LE_Read_Advertising_Channel_Tx_Power ... 259
HCI_LE_Set_Advertising Data ... 259
HCI_LE_Set_Scan_Response_Data .. 260
HCI_LE_Set_Advertise_Enable .. 261
HCI_LE_Set_Scan_Parameters ... 262
HCI_LE_Set_Scan_Enable .. 263
HCI_LE_Create_Connection ... 264
HCI_LE_Create_Connection_Cancel .. 266
HCI_LE_Read_White_List_Size ... 267
HCI_LE_Clear_White_List ... 267
HCI_LE_Add_Device_To_White_List ... 268
HCI_LE_Remove-Device_From_White_List ... 269
HCI_LE_Connection_Update .. 270
HCI_LE_Set_Host_Channel_Classifaction ... 271
HCI_LE_Read_Channel_Map ... 272
HCI_LE_Read_Remote_Used_Features ... 273
HCI_LE_Encrypt ... 274
HCI_LE_Rand ... 275
HCI_LE_Start_Encryption .. 275
HCI_LE_Long_Term_Key_Request_Reply .. 277

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 7 of 737 January 10, 2014

HCI_LE_Long_Term_Key_Request_Negative_Key_Reply ... 278
HCI_LE_Read_Supported_States .. 278
HCI_LE_Receiver_Test_Command .. 281
HCI_LE_Transmitter_Test .. 282
HCI_LE_Test_End .. 283

2.2.9 MISCELLANEOUS COMMANDS/PARAMETERS ... 284
HCI_Version_Supported.. 284
HCI_Command_Supported .. 285
HCI_Send_Raw_Command ... 286
HCI_Send_ACL_Data ... 287
HCI_Send_SCO_Data ... 288
HCI_Change_SCO_Configuration .. 289
HCI_Reconfigure_Driver .. 290
HCI_Set_Host_Flow_Control .. 290
HCI_Query_Host_Flow_Control ... 291

2.2.10 HCI EVENT/DATA CALLBACKS AND REGISTRATION .. 292
HCI_Event_Callback_t .. 292
HCI_ACL_Data_Callback_t .. 296
HCI_SCO_Data_Callback_t .. 297
HCI_Register_Event_Callback .. 297
HCI_Register_ACL_Data_Callback .. 298
HCI_Register_SCO_Data_Callback .. 299
HCI_Un_Register_Callback .. 299

2.2.11 HCI EVENTS .. 300
etInquiry_Complete_Event .. 305
etInquiry_Result_Event ... 305
etConnection_Complete_Event ... 306
etConnection_Request_Event .. 307
etDisconnection_Complete_Event ... 308
etAuthentication_Complete_Event .. 309
etRemote_Name_Request_Complete_Event ... 309
etEncryption_Change_Event ... 310
etChange_Connection_Link_Key_Complete_Event ... 310
etMaster_Link_Key_Complete_Event... 311
etRead_Remote_Supported_Features_Complete_Event ... 311
etRead_Remote_Version_Information_Complete_Event.. 312
etQoS_Setup_Complete_Event .. 323
etHardware_Error_Event ... 323
etFlush_Occurred_Event .. 324
etRole_Change_Event.. 324
etNumber_Of_Completed_Packets_Event .. 325
etMode_Change_Event .. 325
etReturn_Link_Keys_Event ... 326
etPIN_Code_Request_Event .. 327
etLink_Key_Request_Event .. 327
etLink_Key_Notification_Event .. 328
etLoopback_Command_Event ... 328
etData_Buffer_Overflow_Event .. 328
etMax_Slots_Change_Event .. 329

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 8 of 737 January 10, 2014

etRead_Clock_Offset_Complete_Event .. 329
etConnection_Packet_Type_Changed_Event .. 330
etQoS_Violation_Event ... 331
etPage_Scan_Mode_Change_Event .. 331
etPage_Scan_Repetition_Mode_Change_Event .. 332
etFlow_Specification_Complete_Event... 333
etInquiry_Result_With_RSSI_Event ... 334
etRead_Remote_Extended_Features_Complete_Event ... 334
etSynchronous_Connection_Complete_Event ... 336
etSynchronous_Connection_Changed_Event .. 337
etSniff_Subrating_Event .. 338
etExtended_Inquiry_Result_Event .. 339
etEncryption_Key_Refresh_Complete_Event ... 339
etIO_Capability_Request_Event .. 340
etIO_Capability_Response_Event ... 340
etUser_Confirmation_Request_Event ... 341
etUser_Passkey_Request_Event .. 341
etRemote_OOB_Data_Request_Event .. 342
etSimple_Pairing_Complete_Event ... 342
etLink_Supervision_Timeout_Changed_Event ... 342
etEnhanced_Flush_Complete_Event ... 343
etUser_Passkey_Notification_Event .. 343
etKeypress_Notification_Event ... 343
etRemote_Host_Supported_Features_Notification_Event .. 344
etPhysical_Link_Complete_Event ... 344
etChannel_Selected_Event .. 344
etDisconnection_Physical_Link_Complete_Event .. 345
etPhysical_Link_Loss_Early_Warning_Event .. 345
etPhysical_Link_Recovery_Event ... 346
etLogical_Link_Complete_Event .. 346
etDisconnection_Logical_Link_Complete_Event ... 346
etFlow_Spec_Modify_Complete_Event .. 347
etNumber_Of_Completed_Data_Blocks_Event .. 347
etShort_Range_Mode_Change_Complete_Event ... 348
etAMP_Status_Change_Event ... 348
etAMP_Start_Test_Event .. 349
etAMP_Test_End_Event ... 349
etAMP_Receiver_Report_Event .. 350
etPlatform_Specific_Event .. 350

2.2.12 HCI LE META EVENT SUB-EVENTS .. 351
meConnection_Complete_Event ... 351
meAdvertising_Report_Event .. 352
meConnection_Update_Complete_Event .. 354
meRead_Remote_Used_Features_Complete_Event ... 354
meLong_Term_Key_Request_Event ... 354

2.3 L2CAP API ... 355

2.3.1 L2CAP SERVICE PRIMITIVES .. 355
L2CA_Set_Timer_Values .. 357
L2CA_Get_Timer_Values ... 358

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 9 of 737 January 10, 2014

L2CA_Connect_Request ... 359
L2CA_Connect_Response ... 360
L2CA_Config_Request.. 362
L2CA_Config_Response ... 364
L2CA_Disconnect_Request ... 366
L2CA_Disconnect_Response .. 367
L2CA_Data_Write ... 367
L2CA_Enhanced_Data_Write ... 368
L2CA_Fixed_Channel_Data_Write... 370
L2CA_Enhanced_Fixed_Channel_Data_Write ... 371
L2CA_Group_Data_Write ... 373
L2CA_Ping .. 374
L2CA_Get_Info ... 375
L2CA_Connection_Parameter_Update_Request ... 376
L2CA_Connection_Parameter_Update_Response .. 378
L2CA_Group_Create ... 379
L2CA_Group_Close .. 380
L2CA_Group_Add_Member ... 380
L2CA_Group_Remove_Member .. 381
L2CA_Get_Group_Membership ... 382
L2CA_Enable_CLT ... 383
L2CA_Disable_CLT .. 384
L2CA_Flush_Channel_Data .. 384
L2CA_Get_Current_Channel_Configuration .. 385
L2CA_Get_Link_Connection_Configuration ... 386
L2CA_Set_Link_Connection_Configuration .. 388
L2CA_Get_Link_Connection_State .. 389
L2CA_Get_Channel_Queue_Threshold .. 390
L2CA_Set_Channel_Queue_Threshold... 391

2.3.2 L2CAP EVENT FUNCTIONS/PROTOTYPE ... 392
L2CA_Register_PSM .. 392
L2CA_Un_Register_PSM ... 393
L2CA_Register_Fixed_Channel .. 394
L2CA_Un_Register_Fixed_Channel ... 395
L2CA_Event_Callback_t ... 396

2.3.3 L2CAP EVENTS ... 397
etConnect_Indication ... 398
etConnect_Confirmation .. 399
etConfig_Indication ... 401
etConfig_Confirmation .. 402
etDisconnect_Indication .. 404
etDisconnect_Confirmation ... 404
etTimeout_Indication ... 405
etEcho_Confirmation ... 405
etInformation_Confirmation .. 406
etData_Indication ... 406
etData_Error_Indication .. 407
etGroup_Data_Indication ... 407
etGroup_Member_Status ... 408
etChannel_Buffer_Empty_Indication .. 408

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 10 of 737 January 10, 2014

etConnection_Parameter_Update_Indication .. 408
etConnection_Parameter_Update_Confirmation ... 409
etFixed_Channel_Connect_Indication ... 410
etFixed_Channel_Disconnect_Indication .. 411
etFixed_Channel_Data_Indication... 411
etFixed_Channel_Buffer_Empty_Indication ... 411

2.4 SDP API .. 412

2.4.1 COMMONLY USED SDP DATA TYPES ... 412
SDP_Data_Element_Type_t .. 413
SDP_UUID_Entry_t .. 413
SDP_Attribute_ID_List_Entry_t ... 414
SDP_Data_Element_t .. 415
SDP_Response_Data_Type_t .. 416
SDP_Error_Response_Data_t .. 416

2.4.2 SDP EVENT CALLBACKS ... 416
SDP_Response_Callback_t .. 417
SDP Response Data Structures .. 418
SDP_Connection_Event_Callback_t ... 419
SDP Connection Event Structures ... 420

2.4.3 SDP FUNCTIONS .. 420
SDP_Create_Service_Record .. 422
SDP_Update_Service_Record_Service_Class ... 423
SDP_Delete_Service_Record .. 424
SDP_Add_Attribute ... 424
SDP_Add_Raw_Attribute.. 425
SDP_Delete_Attribute ... 426
SDP_Service_Search_Request .. 427
SDP_Service_Attribute_Request ... 428
SDP_Service_Attribute_Request_Raw .. 430
SDP_Service_Search_Attribute_Request .. 431
SDP_Service_Search_Attribute_Request_Raw ... 433
SDP_Cancel_Service_Request .. 434
SDP_Parse_Raw_Attribute_Response_Data ... 435
SDP_Free_Parsed_Attribute_Response_Data ... 436
SDP_Set_Disconnect_Mode .. 437
SDP_Disconnect_Server .. 438
SDP_Get_Server_Connection_Mode .. 438
SDP_Set_Server_Connection_Mode ... 439
SDP_Connect_Request_Response ... 440

2.5 RFCOMM API ... 441

2.5.1 RFCOMM COMMANDS ... 441
RFCOMM_Set_System_Parameters ... 442
RFCOMM_Get_System_Parameters ... 444
RFCOMM_Set_Data_Queuing_Parameters .. 444
RFCOMM_Get_Data_Queuing_Parameters ... 445
RFCOMM_Register_Server_Channel ... 446
RFCOMM_Un_Register_Server_Channel .. 447
RFCOMM_Open_Request .. 448

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 11 of 737 January 10, 2014

RFCOMM_Open_Response .. 450
RFCOMM_Release_Request ... 451
RFCOMM_Send_Credits .. 451
RFCOMM_Send_Data .. 452
RFCOMM_Send_Data_With_Credits ... 453
RFCOMM_Parameter_Negotiation_Response .. 455
RFCOMM_Test_Request .. 456
RFCOMM_Flow_Request ... 457
RFCOMM_Modem_Status .. 458
RFCOMM_Line_Status_Change ... 459
RFCOMM_Remote_Port_Negotiation_Request ... 460
RFCOMM_Remote_Port_Negotiation_Response ... 463
RFCOMM_Query_Remote_Port_Negotiation .. 464
RFCOMM_Get_Channel_Status ... 465
RFCOMM_Query_Server_Channel_Present ... 466

2.5.2 RFCOMM EVENT CALLBACK ... 467
RFCOMM_Event_Callback_t ... 467

2.5.3 RFCOMM EVENTS ... 468
etOpen_Indication .. 469
etOpen_Confirmation .. 470
etRelease_Indication .. 470
etDLCI_Data_Indication .. 471
etDLCI_Param_Negotiation_Indication .. 471
etRemote_Port_Negotiation_Indication... 472
etRemote_Port_Negotiation_Confirmation ... 472
etRemote_Line_Status_Indication ... 474
etRemote_Line_Status_Confirmation .. 474
etRemote_Line_Status_Confirmation .. 475
etModem_Status_Indication .. 475
etModem_Status_Confirmation ... 476
etTest_Confirmation .. 476
etFlow_Indication .. 477
etFlow_Confirmation ... 477
etCredit_Indication .. 477
etNon_Supported_Command_Indication... 478
etTransport_Buffer_Empty_Indication .. 478

2.6 SCO API ... 480

2.6.1 SCO EVENT/DATA CALLBACKS AND REGISTRATION ... 480
SCO_Connect_Request_Callback_t .. 480
SCO_Connection_Callback_t .. 481
SCO_Register_Synchronous_Connect_Request_Callback ... 483
SCO_Register_Connect_Request_Callback .. 484
SCO_Un_Register_Callback ... 485

2.6.2 SCO COMMANDS ... 486
SCO_Setup_Synchronous_Connection ... 487
SCO_Add_Connection .. 488
SCO_Close_Connection .. 488
SCO_Accept_Synchronous_Connection ... 489

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 12 of 737 January 10, 2014

SCO_Accept_Connection .. 490
SCO_Modify_Synchronous_Connection... 491
SCO_Send_Data .. 492
SCO_Set_Queue_Threshold .. 493
SCO_Get_Queue_Threshold ... 494
SCO_Query_Packet_Information .. 495
SCO_Query_Data_Format ... 496
SCO_Change_Data_Format .. 497
SCO_Change_Buffer_Size .. 499
SCO_Purge_Buffer .. 500
SCO_Queue_Data .. 500
SCO_Change_Packet_Information .. 501
SCO_Set_Connection_Mode ... 502
SCO_Set_Physical_Transport .. 503

3. PROFILE INTERFACES ... 505

3.1 GAP Programming Interface .. 505

3.1.1 COMMONLY USED GAP DATA TYPES ... 505
GAP_Authentication_Information_t .. 505
GAP_LE_Authentication_Response_Information_t ... 507

3.1.2 GAP FUNCTIONS ... 509
GAP_Set_Discoverability_Mode .. 513
GAP_Query_Discoverability_Mode .. 514
GAP_Set_Connectability_Mode .. 515
GAP_Query_Connectability_Mode ... 515
GAP_Set_Pairability_Mode .. 516
GAP_Query_Pairability_Mode .. 517
GAP_Set_Authentication_Mode ... 518
GAP_Query_ Authentication _Mode... 519
GAP_Set_Encryption_Mode ... 520
GAP_Cancel_Set_Encryption _Mode ... 521
GAP_Query_Encryption_Mode .. 522
GAP_Authenticate_Remote_Device ... 523
GAP_Cancel_Authenticate_Remote_Device .. 524
GAP_Register_Remote_Authentication .. 524
GAP_Un_Register_Remote_Authentication ... 525
GAP_Authentication_Response .. 526
GAP_Perform_Inquiry ... 527
GAP_Cancel_Inquiry ... 529
GAP_Set_Inquiry_Mode ... 530
GAP_Query_Inquiry_Mode .. 531
GAP_Query_Remote_Device_Name .. 532
GAP_Cancel_Query_Remote_Device_Name ... 533
GAP_Query_Remote_Features .. 534
GAP_Query_Remote_Version_Information ... 535
GAP_Initiate_Bonding .. 536
GAP_Cancel_Bonding ... 537
GAP_End_Bonding ... 538
GAP_Query_Local_BD_ADDR .. 539

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 13 of 737 January 10, 2014

GAP_Set_Class_Of_Device .. 539
GAP_Query_Class_Of_Device ... 540
GAP_Set_Local_Device_Name .. 541
GAP_Query_Local_Device_Name .. 542
GAP_Disconnect_Link .. 542
GAP_Query_Connection_Handle .. 543
GAP_Query_Local_Out_Of_Band_Data .. 544
GAP_Refresh_Encryption_Key ... 545
GAP_Read_Extended_Inquiry_Information ... 546
GAP_Write_Extended_Inquiry_Information ... 547
GAP_Convert_Extended_Inquiry_Response_Data ... 548
GAP_Parse_Extended_Inquiry_Response_Data ... 548
GAP_LE_Create_Connection .. 549
GAP_LE_Cancel_Create_Connection ... 552
GAP_LE_Disconnect ... 553
GAP_LE_Read_Remote_Features .. 554
GAP_LE_Perform_Scan .. 555
GAP_LE_Cancel_Scan .. 557
GAP_LE_Set_Advertising_Data ... 557
GAP_LE_Convert_Advertising_Data ... 559
GAP_LE_Parse_Advertising_Data .. 559
GAP_LE_Set_Scan_Response_Data ... 560
GAP_LE_Convert_Scan_Response_Data ... 562
GAP_LE_Parse_Scan_Response_Data ... 562
GAP_LE_Advertising_Enable ... 563
GAP_LE_Advertising_Disable .. 566
GAP_LE_Generate_Non_Resolvable_Address ... 567
GAP_LE_Generate_Static_Address .. 568
GAP_LE_Generate_Resolvable_Address ... 569
GAP_LE_Resolve_Address ... 570
GAP_LE_Set_Random_Address ... 570
GAP_LE_Add_Device_To_White_List .. 571
GAP_LE_Remove_Device_From_White_List ... 573
GAP_LE_Read_White_List_Size .. 574
GAP_LE_Set_Pairability_Mode .. 575
GAP_LE_Register_Remote_Authentication ... 576
GAP_LE_Un_Register_Remote_Authentication .. 577
GAP_LE_Pair_Remote_Device .. 578
GAP_LE_Authentication_Response .. 580
GAP_LE_Reestablish_Security ... 581
GAP_LE_Request_Security .. 583
GAP_LE_Set_Fixed_Passkey.. 584
GAP_LE_Query_Encryption_Mode .. 585
GAP_LE_Query_Connection_Handle ... 586
GAP_LE_Query_Connection_Parameters... 587
GAP_LE_Generate_Long_Term_Key... 587
GAP_LE_Regenerate_Long_Term_Key ... 589
GAP_LE_Diversify_Function ... 590
GAP_LE_Connection_Parameter_Update_Request .. 591
GAP_LE_Connection_Parameter_Update_Response ... 592
GAP_LE_Update_Connection_Parameters ... 594

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 14 of 737 January 10, 2014

3.1.3 GAP EVENT CALLBACKS .. 596
GAP_Event_Callback_t ... 597
GAP_LE_Event_Callback_t .. 598

3.1.4 GAP EVENTS ... 599
etInquiry_Result ... 601
etEncryption_Change_Result .. 602
etAuthentication ... 602
etRemote_Name_Result .. 604
etInquiry_Entry_Result .. 605
etInquiry_With_RSSI_Entry_Result ... 606
etExtended_Inquiry_Entry_Result ... 607
etEncryption_Refresh_Result .. 608
etRemote_Features_Result .. 608
etRemote_Version_Information_Result .. 609
etLE_Remote_Features_Result .. 609
etLE_Advertising_Report .. 610
etLE_Connection_Complete .. 611
etLE_Disconnection_Complete ... 612
etLE_Encryption_Change .. 613
etLE_Encryption_Refresh_Complete .. 613
etLE_Authentication .. 613
etLE_Connection_Parameter_Update_Request ... 619
etLE_Connection_Parameter_Update_Response .. 620
etLE_Connection_Parameter_Updated .. 620

3.2 SPP Programming Interface ... 621

3.2.1 SPP COMMANDS .. 621
SPP_Open_Server_Port ... 622
SPP_Close_Server_Port ... 623
SPP_Open_Port_Request_Response ... 624
SPP_Register_SDP_Record ... 624
SPP_Register_Raw_SDP_Record ... 626
SPP_Open_Remote_Port ... 627
SPP_Close_Port ... 628
SPP_Data_Read ... 629
SPP_Data_Write .. 630
SPP_Change_Buffer_Size ... 631
SPP_Purge_Buffer ... 632
SPP_Send_Break ... 633
SPP_Line_Status .. 634
SPP_Port_Status .. 635
SPP_Send_Port_Information ... 635
SPP_Respond_Port_Information ... 638
SPP_Query_Remote_Port_Information ... 639
SPP_Respond_Query_Port_Information ... 639
SPP_Get_Configuration_Parameters ... 640
SPP_Set_Configuration_Parameters .. 641
SPP_Get_Server_Connection_Mode ... 642
SPP_Set_Server_Connection_Mode .. 643
SPP_Get_Port_Connection_State .. 644

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 15 of 737 January 10, 2014

SPP_Set_Queuing_Parameters .. 645
SPP_Get_Queuing_Parameters .. 646
SPP_Query_Server_Present ... 647

3.2.2 SPP EVENT CALLBACK PROTOYPE ... 648
SPP_Event_Callback_t .. 648

3.2.3 SPP EVENTS .. 649
etPort_Open_Indication ... 650
etPort_Open_Confirmation .. 650
etPort_Close_Port_Indication .. 651
etPort_Status_Indication .. 651
etPort_Data_Indication .. 652
et Port_Transmit_Buffer_Empty_Indication ... 652
etPort_Line_Status_Indication ... 653
etPort_Send_Port_Information_Indication .. 653
etPort_Send_Port_Information_Confirmation ... 655
etPort_Query_Port_Information_Indication .. 655
etPort_Query_Port_Information_Confirmation ... 655
etPort_Open_Request_Indication .. 656

3.3 GOEP Programming Interface ... 657

3.3.1 GOEP COMMANDS .. 657
GOEP_Open_Server_Port ... 658
GOEP_Close_Server_Port ... 659
GOEP_Open_Port_Request_Response .. 659
GOEP_Register_SDP_Record ... 660
GOEP_Register_Raw_SDP_Record .. 662
GOEP_Open_Remote_Port ... 663
GOEP_Close_Port ... 664
GOEP_Connect_Request ... 665
GOEP_Disconnect_Request .. 667
GOEP_Put_Request ... 667
GOEP_Get_Request .. 668
GOEP_Set_Path_Request .. 669
GOEP_Abort_Request ... 670
GOEP_Command_Response ... 671
GOEP_Get_Server_Connection_Mode ... 673
GOEP_Set_Server_Connection_Mode .. 673
GOEP_Find_Application_Parameter_Header_By_Tag_ID .. 674
GOEP_Find_Header .. 675
GOEP_Generate_Digest_Nonce .. 676

3.3.2 GOEP EVENT CALLBACK PROTOYPE .. 677
GOEP_Event_Callback_t .. 677

3.3.3 GOEP EVENTS ... 678
etOBEX_Port_Open_Indication .. 679
etOBEX_Port_Open_Confirmation ... 680
etOBEX_Port_Close_Indication .. 680
etOBEX_Connect_Indication .. 680
etOBEX_Connect_Confirmation ... 681
etOBEX_Disconnect_Indication .. 682

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 16 of 737 January 10, 2014

etOBEX_Disconnect_Confirmation .. 682
etOBEX_Put_Indication .. 682
etOBEX_Put_Confirmation ... 683
etOBEX_Get_Indication .. 683
etOBEX_Get_Confirmation .. 684
etOBEX_Set_Path_Indication ... 684
etOBEX_Set_Path_Confirmation .. 684
etOBEX_Abort_Indication .. 685
etOBEX_Abort_Confirmation ... 685
etOBEX_Port_Open_Request_Indication ... 686

3.4 OTP Programming Interface .. 686

3.4.1 OTP COMMANDS/RESPONSES ... 686
OTP_Open_Server_Port .. 688
OTP_Close_Server_Port .. 689
OTP_Open_Port_Request_Response... 690
OTP_Register_SDP_Record .. 690
OTP_Register_Raw_SDP_Record .. 692
OTP_Open_Remote_Port .. 694
OTP_Close_Port .. 695
OTP_Client_Connect ... 695
OTP_Client_Disconnect .. 697
OTP_Client_Get_Directory ... 698
OTP_Client_Get_Object .. 699
OTP_Client_Put_Object_Request ... 700
OTP_Client_Put_Sync_Object_Request ... 702
OTP_Client_Put_Object .. 703
OTP_Client_Set_Path .. 704
OTP_Client_Delete_Object_Request .. 705
OTP_Client_Delete_Sync_Object_Request .. 706
OTP_Client_Abort_Request .. 707
OTP_Connect_Response ... 708
OTP_Get_Directory_Request_Response ... 709
OTP_Set_Path_Response .. 712
OTP_Abort_Response ... 713
OTP_Get_Object_Response .. 713
OTP_Delete_Object_Response .. 714
OTP_Delete_Sync_Object_Response .. 715
OTP_Put_Object_Response ... 717
OTP_Put_Sync_Object_Response ... 718
OTP_Get_Server_Connection_Mode .. 719
OTP_Set_Server_Connection_Mode ... 719

3.4.2 RESPONSE CODES FOR OTP OPERATIONS ... 720

3.4.3 OTP EVENT CALLBACK PROTOYPE .. 721
OTP_Event_Callback_t ... 721

3.4.4 OTP EVENTS .. 722
etOTP_Port_Open_Indication .. 724
etOTP_Port_Open_Confirmation .. 724
etOTP_Port_Open_Request_Indication ... 724

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 17 of 737 January 10, 2014

etOTP_Port_Close_Port_Indication .. 725
etOTP_Connect_Request ... 725
etOTP_Connect_Response .. 726
etOTP_Disconnect_Request .. 726
etOTP_Disconnect_Response .. 727
etOTP_Set_Path_Request .. 727
etOTP_Set_Path_Response .. 728
etOTP_Abort_Request ... 728
etOTP_Abort_Response .. 728
etOTP_Delete_Object_Request ... 729
etOTP_Delete_Sync_Object_Request ... 729
etOTP_Delete_Object_Response ... 729
etOTP_Delete_Sync_Object_Response ... 730
etOTP_Put_Object_Request .. 730
etOTP_Put_Sync_Object_Request .. 731
etOTP_Put_Object_Response .. 732
etOTP_Put_Sync_Object_Response .. 732
etOTP_Get_Object_Request .. 733
etOTP_Get_Object_Response ... 734
etOTP_Get_Directory_Request ... 735
etOTP_Get_Directory_Response ... 735
etOTP_Free_Directory_Information .. 736

4. FILE DISTRIBUTIONS ... 737

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 18 of 737 January 10, 2014

1. Introduction

Bluetopia
®
, the Bluetooth Protocol Stack by Stonestreet One, provides a software architecture

that encapsulates the upper functionality of the Bluetooth Protocol Stack. More specifically, this

stack is a software solution that resides above the Physical HCI (Host Controller Interface)

Transport Layer and extends through the L2CAP (Logical Link Control and Adaptation

Protocol) and the SCO/eSCO (Synchronous Connection-Oriented) Link layers. In addition to

basic functionality at these layers, Bluetopia by Stonestreet One provides implementations of the

Service Discovery Protocol (SDP), RFCOMM (the Radio Frequency serial COMMunications

port emulator), and several of the Bluetooth Profiles. Program access to these layers, services,

and profiles is handled via Application Programming Interface (API) calls.

The remainder of this chapter has sections on the scope of this document, other documents

applicable to this documents, and a listing of acronyms and abbreviations. Chapter 2 is the API

reference which contains a description of all programming interfaces for Bluetopia. Chapter 3

contains a description of the programming interfaces for the profiles contained in the core

Bluetooth Protocol Stack library. And, Chapter 4 contains the header file name list for the core

Bluetooth Protocol Stack library.

1.1 Scope

This reference manual provides information on the APIs identified in Figure 1-1 below. These

APIs are available on the full range of platforms supported by Stonestreet One:

 Windows

 Linux

 Windows Mobile

 QNX

 Windows CE

 Other Embedded OS

Figure 1-1 The Stonestreet One Bluetooth Protocol Stack

Physical HCI Transport

HCI

L2CAP

RFCOMM

SDP

Bluetooth

Stack
Controller

SCO

Profiles (GAP, SPP, GOEP, etc.)

API API API API

API

API

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 19 of 737 January 10, 2014

1.2 Applicable Documents

The following documents may be used for additional background and technical depth regarding

the Bluetooth technology.

1. Specification of the Bluetooth System, Volume 1, Core, version 1.1, February 22,

2001.

2. Specification of the Bluetooth System, Volume 2, Profiles, version 1.1, February

22, 2001.

3. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 1.2, November 5, 2003.

4. Specification of the Bluetooth System, Volume 2, Core System Package, version

1.2, November 5, 2003.

5. Specification of the Bluetooth System, Volume 3, Core System Package, version

1.2, November 5, 2003.

6. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 2.0 + EDR, November 4, 2004.

7. Specification of the Bluetooth System, Volume 2, Core System Package, version 2.0

+ EDR, November 4, 2004.

8. Specification of the Bluetooth System, Volume 3, Core System Package, version 2.0

+ EDR, November 4, 2004.

9. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 2.1+EDR, July 26, 2007.

10. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 2.1+EDR, July 26, 2007.

11. Specification of the Bluetooth System, Volume 2, Core System Package [Controller

Volume], version 2.1+EDR, July 26, 2007.

12. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 2.1+EDR, July 26, 2007.

13. Specification of the Bluetooth System, Volume 4, Host Controller Interface

[Transport Layer], version 2.1+EDR, July 26, 2007.

14. Specification of the Bluetooth System, Bluetooth Core Specification Addendum 1,

June 26, 2008.

15. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 3.0+HS, April 21, 2009.

16. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 3.0+HS, April 21, 2009.

17. Specification of the Bluetooth System, Volume 2, Core System Package [Controller

Volume], version 3.0+HS, April 21, 2009.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 20 of 737 January 10, 2014

18. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 3.0+HS, April 21, 2009.

19. Specification of the Bluetooth System, Volume 4, Host Controller Interface

[Transport Layer], version 3.0+HS, April 21, 2009.

20. Specification of the Bluetooth System, Volume 5, Core System Package [AMP

Controller Volume], version 3.0+HS, April 21, 2009.

21. Specification of the Bluetooth System, Volume 0, Master Table of Contents &

Compliance Requirements, version 4.0, June 30, 2010.

22. Specification of the Bluetooth System, Volume 1, Architecture and Terminology

Overview, version 4.0, June 30, 2010.

23. Specification of the Bluetooth System, Volume 2, Core System Package [BR/EDR

Controller Volume], version 4.0, June 30, 2010.

24. Specification of the Bluetooth System, Volume 3, Core System Package [Host

Volume], version 4.0, June 30, 2010.

25. Specification of the Bluetooth System, Volume 4, Host Controller Interface

[Transport Layer], version 4.0, June 30, 2010.

26. Specification of the Bluetooth System, Volume 5, Core System Package [AMP

Controller Volume], version 4.0, June 30, 2010.

27. Specification of the Bluetooth System, Volume 6, Core System Package [Low

Energy Controller Volume], version 4.0, June 30, 2010.

28. Bluetooth Assigned Numbers, version 1.1, February 22, 2001.

29. Digital cellular telecommunications system (Phase 2+); Terminal Equipment to

Mobile Station (TE-MS) multiplexer protocol (GSM 07.10), version 7.1.0, Release

1998; commonly referred to as: ETSI TS 07.10.

30. Infrared Data Association, IrDA Object Exchange Protocol (IrOBEX) with

Published Errata, Version 1.2, April 1999.

The Bluetooth Protocol Stack API calls were developed to closely follow the above

specifications. Note that in previous versions of this document, the Bluetooth section that was

directly applicable to the specified functionality was referenced. With the advent of newer

versions of the Bluetooth Specification being served by this document, multiple references would

need to be given for the specified function. Because of this, the section references have been

dropped from this document. The reader should therefore consult the correct Bluetooth Core

specification and determine the applicable section manually. In almost all cases, the

determination of the section can easily be found by examining the table of contents of the core

specification.

Possible error returns are listed for each API function call. These are the most likely errors, but in

fact programmers should allow for the possibility of any error listed in the BTerrors.h header file

to occur as the value of a function return.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 21 of 737 January 10, 2014

1.3 Acronyms and Abbreviations

Acronyms and abbreviations used in this document and other Bluetooth specifications are listed in

the table below.

Term Meaning

ACL link Asynchronous Connection-less Link – Provides a packet-

switched connection. (Master to any slave)

API Application Programming Interface

BD_ADDR Bluetooth Device Address

BSC Bluetooth Stack Controller

BR Basic Rate

BR/EDR Basic Rate/Enhanced Data Rate

BT Bluetooth

CID Channel Identifier

dB Decibels

DH Data-High Rate Data packet type for high rate data

DLCI Data Link Connection Identifier

DM Data - Medium Rate Data packet type for medium rate data

DUT Device Under Test

DV Data Valid (serial interface signal)

DV Data Voice data packet type for data and voice

EDR Enhanced Data Rate

ETSI European Telecommunications Standards Institute

FC Flow Control (serial interface signal)

FCC Federal Communications Commission

GAP Generic Application Profile

HCI Host Controller Interface

HS High Speed

HV High quality Voice e.g. HV1 packet

IAC Inquiry Access Code

IC Incoming Call indicator (serial interface signal)

ID Identifier

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 22 of 737 January 10, 2014

Term Meaning

L2CA Logical Link Control and Adaptation Logical Link Control And

Management part of the Bluetooth protocol stack

L2CAP Logical Link Control and Adaptation Protocol

LAP Lower Address Part (of Bluetooth device address)

LCID Local Channel Identifier

LE Low Energy

LM Link Manager

LMP Link Manager Protocol For LM peer to peer communication

LSB Least Significant Bit

MSB Most Significant Bit

MSC Message Sequence Chart

MTU Maximum Transmission Unit

NAP Non-significant Address Part

OCF Opcode Command Field

OGF Opcode Group Field

PDU Protocol Data Unit (a message)

PIN Personal Identification Number

PSM Protocol/Service Multiplexer

QoS Quality of Service

RFCOMM Radio Frequency serial COMMunications – Serial cable

emulation protocol based on ETSI TS 07.10

RSSI Received Signal Strength Indication

RTC Ready to Communicate (serial interface signal)

RTR Ready to Receive (serial interface signal)

RX Receiver

SCO link Synchronous Connection-Oriented Link – Supports time-

bounded information like voice.

eSCO link Extended Synchronous Connection-Oriented Link – Supports

time-bounded information like voice. (Version 1.2)

SDP Service Discovery Protocol

SPP Serial Port Protocol

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 23 of 737 January 10, 2014

Term Meaning

SSP Secure Simple Pairing

TBD To Be Defined

TCS Telephony Control protocol Specification

TEI Terminal Endpoint Identifier

TX Transmit

UAP Upper Address Part

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

UUID Universally Unique Identifier

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 24 of 737 January 10, 2014

2. Stack Application Programming Interface

The various parts of the Bluetooth Protocol Stack implementation are documented in separate

sections in this chapter. The sections and their contents are:

2.1 BSC (Bluetooth Stack Controller) API

2.2 HCI API

2.3 L2CAP API

2.4 SDP API

2.5 RFCOMM API

2.6 SCO API

There is a common set of error codes that applies to all API function calls. Each function will

have its allowable/expected set of error codes displayed. The set of all possible errors codes are

shoen in the following list. Some error codes may occur only in a specific platform

implementation. For example, the BTPS_ERROR_DLL_INITIALIZATION_ERROR is specific to a

Windows or Windows CE implementation, and would not occur in an embedded stack

implementation. The constant name is designed to clearly indicate the error which occurred:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_STACK_NOT_INITIALIZED

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_STACK_INITIALIZATION_ERROR

BTPS_ERROR_DLL_INITIALIZATION_ERROR

BTPS_ERROR_HCI_INITIALIZATION_ERROR

BTPS_ERROR_GAP_INITIALIZATION_ERROR

BTPS_ERROR_SCO_INITIALIZATION_ERROR

BTPS_ERROR_L2CAP_INITIALIZATION_ERROR

BTPS_ERROR_RFCOMM_INITIALIZATION_ERROR

BTPS_ERROR_SDP_INITIALIZATION_ERROR

BTPS_ERROR_SPP_INITIALIZATION_ERROR

BTPS_ERROR_GOEP_INITIALIZATION_ERROR

BTPS_ERROR_OTP_INITIALIZATION_ERROR

BTPS_ERROR_DEBUG_CALLBACK_ALREADY_INSTALLED

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_DEVICE_RESET_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

BTPS_ERROR_HCI_TIMEOUT_ERROR

BTPS_ERROR_UNSUPPORTED_HCI_VERSION

BTPS_ERROR_UNKNOWN_SUPPORTED_FEATURES

BTPS_ERROR_UNKNOWN_HCI_BUFFER_SIZE

BTPS_ERROR_UNABLE_TO_REGISTER_EVENT_CALLBACK

BTPS_ERROR_UNABLE_TO_REGISTER_ACL_CALLBACK

BTPS_ERROR_UNABLE_TO_REGISTER_SCO_CALLBACK

BTPS_ERROR_SIGNALLING_MTU_EXCEEDED

BTPS_ERROR_UNABLE_TO_REGISTER_PSM

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_UNABLE_TO_UNREGISTER_PSM

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 25 of 737 January 10, 2014

BTPS_ERROR_PSM_NOT_REGISTERED

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_ACCEPTING_CONNECTION_FROM_DEVICE

BTPS_ERROR_INVALID_FLUSH_TIMEOUT_VALUE

BTPS_ERROR_INVALID_STATE_FOR_CONFIG

BTPS_ERROR_ADDING_CID_INFORMATION

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_INVALID_CONNECTION_STATE

BTPS_ERROR_CHANNEL_NOT_IN_OPEN_STATE

BTPS_ERROR_INVALID_CID

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_NEGOTIATED_MTU_EXCEEDED

BTPS_ERROR_CONECTIONLESS_MTU_EXCEEDED

BTPS_ERROR_CID_NOT_GROUP_CID

BTPS_ERROR_GROUP_MEMBER_ALREADY_EXISTS

BTPS_ERROR_GROUP_MEMBER_NOT_FOUND

BTPS_ERROR_CONNECTION_TO_DEVICE_LOST

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_SDP_DATA_ELEMENT_EXPECTED

BTPS_ERROR_SDP_INVALID_DATA_ELEMENT_LENGTH

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_SDP_INVALID_DATA_ELEMENT

BTPS_ERROR_ADDING_SERVICE_ATTRIBUTE

BTPS_ERROR_DELETING_SERVICE_RECORD

BTPS_ERROR_EXPECTED_UUID_ENTRY

BTPS_ERROR_SDP_INVALID_DATA_TYPE

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_ADDING_CALLBACK_INFORMATION

BTPS_ERROR_DELETING_CALLBACK_INFORMATION

BTPS_ERROR_NO_CALLBACK_REGISTERED

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_MAX_SCO_CONNECTIONS

BTPS_ERROR_INTERNAL_ERROR

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_ADDING_SERVER_INFORMATION

BTPS_ERROR_RFCOMM_REMOVING_SERVER_INFORMATION

BTPS_ERROR_RFCOMM_UNABLE_TO_ADD_CONNECTION_INFORMATION

BTPS_ERROR_RFCOMM_UNABLE_TO_ADD_CHANNEL_INFORMATION

BTPS_ERROR_RFCOMM_UNABLE_TO_CONNECT_TO_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

BTPS_ERROR_RFCOMM_DISC_ALREADY_PENDING

BTPS_ERROR_RFCOMM_TEI_IS_DISCONNECTING

BTPS_ERROR_RFCOMM_CONTROL_MESSAGE_CURRENTLY_PENDING

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 26 of 737 January 10, 2014

BTPS_ERROR_RFCOMM_FLOW_IS_DISABLED

BTPS_ERROR_RFCOMM_INVALID_MAX_FRAME_SIZE

BTPS_ERROR_RFCOMM_COMMAND_NOT_ALLOWED

BTPS_ERROR_RFCOMM_ADDING_MESSAGE_INFORMATION

BTPS_ERROR_RFCOMM_INVALID_FLOW_STATE

BTPS_ERROR_RFCOMM_MAX_FRAME_SIZE_EXCEEDED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

BTPS_ERROR_SPP_BUFFER_FULL

BTPS_ERROR_OUTSTANDING_TRANSACTION

BTPS_ERROR_TIMER_VALUE_OUT_OF_RANGE

BTPS_ERROR_GOEP_NOT_INITIALIZED

BTPS_ERROR_GOEP_COMMAND_NOT_ALLOWED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

BTPS_ERROR_DEVICE_NOT_CONNECTED

BTPS_ERROR_ACTION_NOT_ALLOWED

BTPS_ERROR_SPP_BUFFER_EMPTY

BTPS_ERROR_UNABLE_TO_ENABLE_HC_TO_H_FLOW_CONTROL

BTPS_ERROR_VS_HCI_ERROR

BTPS_ERROR_ALREADY_OUTSTANDING

BTPS_ERROR_FEATURE_NOT_AVAILABLE

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_SUPPORT_LE

BTPS_ERROR_SCAN_ACTIVE

BTPS_ERROR_SLAVE_CONNECTION_PRESENT

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_DEVICE_IS_SLAVE

BTPS_ERROR_INVALID_CONNECTION_HANDLE

BTPS_ERROR_READ_REMOTE_FEATURES_OUTSTANDING

BTPS_ERROR_CREATE_CONNECTION_OUTSTANDING

BTPS_ERROR_INVALID_CONNECTION_PARAMETERS

BTPS_ERROR_WHITE_LIST_SIZE_EXCEEDED

BTPS_ERROR_WHITE_LIST_IN_USE

BTPS_ERROR_INVALID_RANDOM_ADDRESS

BTPS_ERROR_RANDOM_ADDRESS_IN_USE

BTPS_ERROR_PAIRING_ACTIVE

BTPS_ERROR_PAIRING_NOT_ACTIVE

BTPS_ERROR_INVALID_STATE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

2.1 BSC (Bluetooth Stack Controller) API

The functions in this section are not defined in the Bluetooth specification, but have been added to

provide some stack management and debugging aids. They are divided up into subsections on

Callbacks and Commands. The actual prototypes and constants outlined in this section can be

found in the BSCAPI.H header file in the Bluetopia distribution.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 27 of 737 January 10, 2014

2.1.1 BSC Callbacks

BSC_Timer_Callback_t

The prototype function represents the Prototype Function for a Bluetooth Timer Callback.

This function will be called whenever a timer that was registered with the

BSC_StartTimer function. This function is guaranteed NOT to be invoked more than

once simultaneously for the specified timer (i.e. this function DOES NOT have be

reentrant). It needs to be noted however, that if the same Callback is installed more that

once (for multiple timers AND they expire simultaneously) then the callbacks will be

called serially. Because of this, the processing in this function should be as efficient as

possible. It should also be noted that this function is called in the Thread Context of a

Thread that the User does not own. Therefore, processing in this function should be as

efficient as possible (this argument holds anyway because another Timer Callback will not

be processed while this function call is outstanding).

Prototype:

void (BTPSAPI *BSC_Timer_Callback_t)(unsigned int BluetoothStackID,

unsigned int TimerID, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Which device stack this packet is from.

TimerID Timer Identifier of the timer that has expired. This value will be

the same as the value returned from a successful call to the

BSC_StartTimer function.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

timer callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_Debug_Callback_t

The following prototype function is for a Bluetooth Stack Debug Data Callback. This

function will be called whenever a complete HCI Packet has been sent or received by the

Bluetooth device that was opened with the Bluetooth Protocol Stack. This function passes

to the caller the HCI Packet that was received and the Debug Callback Parameter that was

specified when this Callback was installed. This callback is best used to simply put data

into a debug viewer. One must not make other Bluetooth Stack calls from within this

callback or the whole system may become unstable or lock-up.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 28 of 737 January 10, 2014

Prototype:

void (BTPSAPI *BSC_Debug_Callback_t)(unsigned int BluetoothStackID,

Boolean_t PacketSent, HCI_Packet_t *HCIPacket, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Which device stack this packet is from.

Packetsent TRUE if HCI packet was sent, FALSE if it was received.

HCIPacket Pointer to packet contents

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_Cleanup_Callback_t

The following prototype function is for a Bluetooth Stack Cleanup Function Callback.

The function is called from within the context of the BSC_Shutdown function. This

function is guaranteed NOT to be called more than once simultaneously (i.e. this function

DOES NOT have to be reentrant). This function will be passed the Bluetooth Stack if for

the device which has the function registered, and the Callback Parameter specified when

the function was registered. If the same function is registered more than once, it will be

called once for each time it was registered.

Prototype:

void (BTPSAPI *BSC_Cleanup_Callback_t)(unsigned int BluetoothStackID,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Which device stack this packet is from.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 29 of 737 January 10, 2014

BSC_Event_Callback_t

The following prototype function is for a Bluetooth Stack BSC Event Callback. This

function is used when an upper layer module requires a specific function provided by

another layer. This callback is registered with BSC_RegisterEventCallback. This function

is guaranteed NOT to be called more than once simultaneously (i.e. this function DOES

NOT have to be reentrant). This function will be passed the Bluetooth Stack ID for the

Bluetooth Stack which has the function registered, and the Callback Parameter specified

when the function was registered.

Prototype:

void (BTPSAPI *BSC_Event_Callback_t)(unsigned int BluetoothStackID,

BSC_Event_Data_t *BSC_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Bluetooth Stack ID of the Bluetooth Stack that generated the

event.

BSC_Event_Data Pointer to the BSC Event Data of the specified event.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_AsynchronousCallbackFunction_t

The following prototype function is for a Bluetooth Stack Asynchronous Function

Callback. This function will be called whenever an asynchronous callback is registered

with the BSC_ScheduleAsynchronousCallback. This function is guaranteed NOT to be

called more than once simultaneously (i.e. this function DOES NOT have to be reentrant).

This function will be passed the Bluetooth Stack ID for the Bluetooth Stack which has the

function registered, and the Callback Parameter specified when the function was

registered. If the same function is registered more than once, it will be called once for each

time it was registered.

Prototype:

void (BTPSAPI *BSC_AsynchronousCallbackFunction_t)(unsigned int BluetoothStackID,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Bluetooth Stack ID of the Bluetooth Stack that issued the call to

BSC_ScheduleAsynchronousCallback.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 30 of 737 January 10, 2014

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.1.2 BSC Commands

The commands in this section are summarized in the table below.

Function Description

BSC_Initialize Initialize a Bluetooth Protocol Stack for a device.

BSC_Shutdown Shutdown a Bluetooth Protocol Stack for a device.

BSC_RegisterDebugCallback Register a function to be called each time an HCI

packet is sent or received.

BSC_UnRegisterDebugCallback Deregister a previously registered debug function.

BSC_RegisterEventCallback Allows caller to register an event callback that is called

when an upper layer needs a specific function in

another layer.

BSC_UnRegisterEventCallback Removes a previously installed event callback.

BSC_LockBluetoothStack Mutual exclusion function used to protect stack

resources as appropriate. Must be paired with the

following unlock mutual exclusion function call.

BSC_UnLockBluetoothStack Mutual exclusion function used to protect stack

resources as appropriate. Must be paired with the

previous lock mutual exclusion function call.

BSC_StartTime Used to implement timing mechanism to support

operation timeout requirements.

BSC_StopTime Used to implement timing mechanism to support

operation timeout requirements.

BSC_AuthenticateDevice Allows a mechanism for any layer to request that a

connected device be authenticated.

BSC_EnableFeature Allows mechanism for any layer to enable a supported

feature (stack must be configured to support this).

BSC_DisableFeature Allows mechanism for any layer to disable a currently

enabled feature (stack must be configured to support

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 31 of 737 January 10, 2014

Function Description

this).

BSC_QueryActiveFeatures Allows mechanism for any layer to query the currently

configured (and active) features.

BSC_QueryStackIdle Allows a mechanism to determine if the stack is

currently processing any packets and/or timers.

BSC_ScheduleAsynchronousCallback Allows a mechanism to schedule an asynchronous

callback.

BSC_AcquireListLock Acquire internal list lock for application list locking

BSC_ReleaseListLock Release previously aquired list lock

BSC_AddGenericListEntry_Actual Add an opaque list entry to a specified list.

BSC_AddGenericListEntry Allocate new opaque list entry and add to a specified

list.

BSC_SearchGenericListEntry Search a specified list for a specific opaque list entry.

BSC_GetNextGenericListEntry Search for the next opaque list entry in the specified list

(given a specific opaque list entry).

BSC_DeleteGenericListEntry Delete an opaque list entry from a specified list.

BSC_FreeGenericListEntryMemory Delete memory that was allocated for an opaque list

entry.

BSC_FreeGenericListEntryList Delete (and free the memory of) each opaque list entry

that is contained in the specified list.

BSC_Initialize

This function is responsible for Initializing a Bluetooth Protocol Stack for the specified Bluetooth

device (using the specified HCI Transport). This command must be called (and complete

successfully) before any other stack command can be called.

Prototype:

int BTPSAPI BSC_Initialize(HCI_DriverInformation_t *HCI_DriverInformation,

unsigned long Flags)

Parameters:

HCI_DriverInformation
1
 Pointer to the driver information structure. This must be a valid

transport supported by the stack. This structure is declared as

follows:

typedef struct

{

 HCI_DriverType_t DriverType;

 (One of the following values: hdtCOMM, hdtUSB, hdt)

 union

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 32 of 737 January 10, 2014

 {

 HCI_COMMDriverInformation_t COMMDriverInformation;

 HCI_USBDriverInformation_t USBDriverInformation;

 } DriverInformation;

} HCI_DriverInformation_t;

where the Comm Driver Information structure is defined as

follows:

typedef struct

{

 unsigned int DriverInformationSize;

 (Size (in Bytes) of this structure)

 unsigned int COMPortNumber;

 (Physical COM Port Number)

 unsigned int BaudRate;

 (Baud Rate Setting)

 HCI_COMM_Protocol_t Protocol to use;

 (One of the following values:

 cpUART, cpUART_RTS_CTS,

 cpBCSP, cpBCSP_Muzzled,

cpH4DS, cpH4DS_RTS_CTS,

cpHCILL, cpHCILL_RTS_CTS)

 unsigned int InitializationDelay;

(Delay (in Milliseconds) to wait for

Bluetooth/Transport Initialization)

 char *COMDeviceName;

(Physical Device Name to use to

override the device to open. If

COMPortNumber is specified to be

the equivalent of negative 1 (-1), then

this value is taken as an absolute

name and the COM Port Number is

NOT appended to this value If this

value is NULL then the default

(compiled) COM Device Name is

used (and the COM Port Number is

appended to the default)

} HCI_COMMDriverInformation_t;

and the USB driver Information structure is defined as follows:

typedef struct

{

 unsigned int DriverInformationSize;

 (Size (in Bytes) of this structure)

 HCI_USB_Driver_t DriverType;

 (HCI USB driver type that is to

be used to communicate with the

USB device. Once of the

following values:

dtStonestreetOne, dtGarmin)

 unsigned int InitializationDelay;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 33 of 737 January 10, 2014

(Delay (in Milliseconds) to wait

for Bluetooth/Transport

Initialization)

 } HCI_USBDriverInformation_t;

Utility Macro’s are defined to aid the programmer initializing

the above HCI Driver Information. These utility Macro’s are

defined as:

HCI_DRIVER_SET_COMM_INFORMATION

HCI_DRIVER_SET_EXTENDED_COMM_INFORMATION_

DELAY

HCI_DRIVER_SET_EXTENDED_COMM_INFORMATION_

DEVICE_NAME

HCI_DRIVER_SET_USB_INFORMATION

HCI_DRIVER_SET_EXTENDED_USB_INFORMATION

HCI_DRIVER_SET_EXTENDED_USB_INFORMATION_

DELAY

Consult the Header files for a description of the parameters that

are accepted by each of the above listed Macro’s.

Flags Should be zero (0) to load the standard/complete Bluetooth

stack. Logical ORing of the following bitmask constants can be

used to modify the standard/complete stack:

BSC_INITIALIZE_FLAG_NO_L2CAP

BSC_INITIALIZE_FLAG_NO_SCO

BSC_INITIALIZE_FLAG_NO_SDP

BSC_INITIALIZE_FLAG_NO_RFCOMM

BSC_INITIALIZE_FLAG_NO_GAP

BSC_INITIALIZE_FLAG_NO_SPP

Return: one of the following depending on whether the value is positive or negative:

BluetoothStackID
2
 [positive] A unique identifier that is used in other stack calls and

callbacks. This ID remains valid for the specified Bluetooth

device until the Bluetooth stack is closed via a call to the

BSC_Shutdown function.

Error Code [negative value] Possible values are:

BTPS_ERROR_RFCOMM_INITIALIZATION_ERROR

BTPS_ERROR_SDP_INITIALIZATION_ERROR

BTPS_ERROR_DLL_INITIALIZATION_ERROR

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DLL_INITIALIZATION_ERROR

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_INITIALIZATION_ERROR

BTPS_ERROR_GAP_INITIALIZATION_ERROR

BTPS_ERROR_SCO_INITIALIZATION_ERROR

BTPS_ERROR_L2CAP_INITIALIZATION_ERROR

BTPS_ERROR_SPP_INITIALIZATION_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 34 of 737 January 10, 2014

Notes:

1. The HCI_DriverInformation parameter is not included in versions of Bluetopia that

have been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

2. The return parameter in versions of Bluetopia that have been optimized to only control

a single Bluetooth device, such as some embedded versions of Bluetopia, will not indicate

a BluetoothStackID. Instead, if a positive value is returned, this is an indication that the

function was successful. The negative return value is valid across all versions of

Bluetopia.

BSC_Shutdown

This function closes the Bluetooth Protocol Stack that was opened for the Bluetooth device

specified via a successful call to the BSC_Initialize function (i.e., a positive return value from that

call). Once this function completes, the Bluetooth device that was opened (and the Bluetooth

Protocol Stack that is associated with the Device) cannot be accessed again until the Device (and

a corresponding Bluetooth Protocol Stack) is re-opened by calling the BSC_Initialize function

again.

Prototype:

void BTPSAPI BSC_Shutdown(unsigned int BluetoothStackID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_RegisterDebugCallback

This is a debugging function that allows the caller to register a Debug Callback that will be called

each time an HCI Packet is sent or received. Note, because this function will be called every time

a packet is sent or received, this function should only be used when debugging is required because

of the performance penalty that is present when using this mechanism. This callback registration

can only be removed via a call to BSC_UnRegisterDebugCallback.

Prototype:

int BTPSAPI BSC_RegisterDebugCallback(unsigned int BluetoothStackID,

BSC_Debug_Callback_t BSC_DebugCallback, unsigned long CallbackParameter)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 35 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BSC_DebugCallback Pointer to a user-supplied callback function which is define as

above in the BSC callback section.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Zero if successful.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_DEBUG_CALLBACK_ALREADY_INSTALLED

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_UnRegisterDebugCallback

This function removes a previously installed Debug Callback for the specified Bluetooth Protocol

Stack. After this function has completed, the caller will no longer be notified via the debug

callback function when a debug event occurs.

Prototype

void BTPSAPI BSC_UnRegisterDebugCallback(unsigned int BluetoothStackID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_RegisterEventCallback

The following function is provided to allows the caller to register an Event Callback for a

specified Bluetooth Protocol Stack that will be called when an upper layer requires a specific

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 36 of 737 January 10, 2014

function that is provided by another layer. Once an Event Callback has been installed in can only

be removed by a call to BSC_UnRegisterEventCallback.

Prototype:

int BTPSAPI BSC_RegisterEventCallback (unsigned int BluetoothStackID,

BSC_Event_Callback_t BSC_EventCallback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BSC_EventCallback Pointer to function that will be called when a BSC Event is

dispatched.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user callback function.

Return:

Non-zero positive value if successful.

Negative if an Error occurred. Possible values are:
BTPS_ERROR_UNABLE_TO_REGISTER_EVENT_CALLBACK

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_UnRegisterEventCallback

This function removes a previously installed Event Callback for the specified Bluetooth Protocol

Stack. Once this call is complete the caller will no longer be notified via the Event Callback

Function when a BSC event occurs.

Prototype:

void BTPSAPI BSC_UnRegisterEventCallback (unsigned int BluetoothStackID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

None

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 37 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_LockBluetoothStack

This function exists to aid Profile programmers by providing a Mutex/Semaphore Lock that is

completely thread safe. This lock is the same lock that the Bluetooth Protocol Stack uses to guard

against re-entrancy problems. Using this mechanism allows atomic operations to be performed

(on the specified Bluetooth Protocol Stack) and guarantees that no other thread can cause an

operation to be performed (on the specified Bluetooth Protocol Stack ONLY). This is a very low-

level primitive and it’s use is really only applicable to Profiles and/or Stack extensions.

Applications should never need to call this function (or it’s converse unlock function). Please see

the documentation contained in the header file (BSCAPI.h) for more information on this

function. It is very important to note that if this function is called, the

BSC_UnLockBluetoothStack is required to be called for every successful call to this function.

Failure to comply with the preceding statement can and will lead to erratic behavior. This

function can be called more than once (in the same thread), however the programmer MUST call

the unlock function the same number of times that this function is successfully called.

Prototype

int BTPSAPI BSC_LockBluetoothStack(unsigned int BluetoothStackID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

Zero if successful.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_UnLockBluetoothStack

This function is provided to allow the programmer a mechanism to release a previous lock that

was successfully acquired with the BSC_LockBluetoothStack function. The locking/unlocking

mechanism exists to aid Profile programmers by providing a Mutex/Semaphore Lock that is

completely thread safe. This lock is the same lock that the Bluetooth Protocol Stack uses to guard

against re-entrancy problems. Using this mechanism allows atomic operations to be performed

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 38 of 737 January 10, 2014

(on the specified Bluetooth Protocol Stack) and guarantees that no other thread can cause an

operation to be performed (on the specified Bluetooth Protocol Stack ONLY). This is a very low-

level primitive and it’s use is really only applicable to Profiles and/or Stack extensions.

Applications should never need to call this function (or it’s converse unlock function). Please see

the documentation contained in the header file (BSCAPI.h) for more information on this

function.

Prototype

void BTPSAPI BSC_UnLockBluetoothStack(unsigned int BluetoothStackID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_StartTimer

The following function is a utility function that exists to allow the programmer a mechanism for

installing an asynchronous Bluetooth timer (of the specified timeout value). The registered timer

callback function will be called when the timeout period expires (in milliseconds), passing the

user supplied callback parameter to the caller. Once a callback is installed, it will be removed

from the system when it expires, the stack is closed, or it is removed by the programmer via the

BSC_StopTimer. Timers should be used sparingly because there are only a finite number of

timers present in the system. It should be noted that all installed Timers are one-shot timers and

not periodic (i.e. they will only expire once). If a periodic timer is required then the Timer must

be re-registered.

Prototype:

int BTPSAPI BSC_StartTimer(unsigned int BluetoothStackID, unsigned int Timeout,

BSC_Timer_Callback_t BSC_TimerCallback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Timeout Timeout value (in milliseconds)

BSC_TimerCallback Pointer to a user-supplied callback function which is defined as

above in the BSC callback section.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function when the timer expires.

Return:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 39 of 737 January 10, 2014

Positive non-zero value if successful. This is the TimerID which is used to identify the

timer. This value can be passed to the BSC_StopTimer function to cancel the timer.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_StopTimer

This function removes a previously installed Bluetooth Timer that was registered with the

BSC_StartTimer function. If this function returns successfully then the specified timer (via

TimerID) will no longer be present in the system, and hence not expire.

Prototype

void BTPSAPI BSC_StopTimer(unsigned int BluetoothStackID, unsigned int TimerID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TimerID Timer indentifier of the timer that is to be stopped. This value

must be a successful return value from the BSC_StartTimer

function.

Return:

Zero value if successful.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_AuthenticateDevice

The following function is provided to allow a mechanism for any layer to request that a connected

device be authenticated. This function accepts as input the Bluetooth Stack ID of the Bluetooth

Stack that the Device is associated with. The second parameter is the Bluetooth address of the

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 40 of 737 January 10, 2014

connected device that requires Authentication. The third parameter is a pointer to a Result

variable that indicates the state of the request. This function returns zero if successful, or a

negative return error code if the Authentication process was not started. This function is currently

utilized to perform Level 4 Security with L2CAP and Secure Simple Pairing. Currently there is

no need for applications to make use of this function.

Prototype

int BTPSAPI BSC_AuthenticateDevice(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of device that is to be authenticated

Result Variable that is to receive the status result from the request.

This value must be one of:

BSC_AUTHENTICATION_REQUEST_RESULT_SUCCESS

BSC_AUTHENTICATION_REQUEST_RESULT_IN_

PROGRESS

BSC_AUTHENTICATION_REQUEST_RESULT_REFUSED

BSC_AUTHENTICATION_REQUEST_RESULT_FAILURE

Return:

Zero value if successful.

Negative if failure.

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part of

the function call or not.

BSC_EnableFeature

The following function is provided to allow a mechanism for any layer to enable a

preconfigured/supported feature. This is useful when Bluetooth chipset configuration is required

to support a feature (e.g. Bluetooth Low Energy or Wide Band Speech) and/or only a single

feature can be active at any given time.

Note:

This functionality is not normally supported by default (i.e. a custom stack configuration/build is

required to enable this functionality).

Prototype

int BTPSAPI BSC_EnableFeature(unsigned int BluetoothStackID, unsigned long Feature)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 41 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Feature Feature to enable. This value must be one of:

BSC_FEATURE_BLUETOOTH_LOW_ENERGY

BSC_FEATURE_ANT_PLUS

BSC_FEATURE_WIDE_BAND_SPEECH

Return:

Zero value if successful.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_FEATURE_NOT_AVAILABLE

BTPS_ERROR_INVALID_STATE

BTPS_ERROR_INVALID_MODE

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_DisableFeature

The following function is provided to allow a mechanism for any layer to disable a

preconfigured/supported (and currently active) feature. This is useful when Bluetooth chipset

configuration is required to support a feature (e.g. Bluetooth Low Energy or Wide Band Speech)

and/or only a single feature can be active at any given time. This is also useful to turn off specific

features to save power (if the chipset supports this functionality).

Note:

This functionality is not normally supported by default (i.e. a custom stack configuration/build is

required to enable this functionality).

Prototype

int BTPSAPI BSC_DisableFeature(unsigned int BluetoothStackID, unsigned long Feature)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Feature Feature to disable. This value must be one of:

BSC_FEATURE_BLUETOOTH_LOW_ENERGY

BSC_FEATURE_ANT_PLUS

BSC_FEATURE_WIDE_BAND_SPEECH

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 42 of 737 January 10, 2014

Return:

Zero value if successful.

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_FEATURE_NOT_AVAILABLE

BTPS_ERROR_INVALID_STATE

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_

ACTIVE

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_QueryActiveFeatures

The following function is provided to allow a mechanism for any layer to determine the currently

active feature. This is useful when Bluetooth chipset configuration is required to support a

feature (e.g. Bluetooth Low Energy or Wide Band Speech) and/or only a single feature can be

active at any given time. This function allows the ability to determine if a feature is currently

configured so that the appropriate action can be taken (i.e. do not use the feature and/or attempt to

enable the feature so it can be used).

Note:

This functionality is not normally supported by default (i.e. a custom stack configuration/build is

required to enable this functionality).

Prototype

int BTPSAPI BSC_QueryActiveFeatures(unsigned int BluetoothStackID,

unsigned long *Feature)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Feature Pointer to a buffer that will contain the features that are

currently enabled/active. This value will be one of:

BSC_FEATURE_BLUETOOTH_LOW_ENERGY

BSC_FEATURE_ANT_PLUS

BSC_FEATURE_WIDE_BAND_SPEECH

Return:

Zero value if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 43 of 737 January 10, 2014

Negative if an Error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_FEATURE_NOT_AVAILABLE

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part of

the function call or not.

BSC_QueryStackIdle

The following function is provided to allow a mechanism for any layer to determine if the

specified protocol stack is “idle”. “Idle”, in this case, means there is no pending processing (e.g.

no timers, packets queued for sending and/or receiving, etc). This is useful in single-threaded

environments and can be used to aid in power saving schemas.

Note:

This function is only applicable in single-threaded environments. This function always returns

that the stack is Idle regardless if there is on-going processing (due to the multi-threaded nature, it

is not possible to ascertain this information).

Prototype

Boolean_t BTPSAPI BSC_QueryStackIdle(unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Return:

BOOLEAN value, TRUE if the stack is currently “idle” (i.e. no processing), or FALSE if

the stack is not currently “idle”.

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part of

the function call or not.

BSC_ScheduleAsynchronousCallback

The following function is provided to allow a mechanism of scheduling a one-shot asynchronous

callback that will be called once for each function invocation.

Prototype:

int BTPSAPI BSC_ScheduleAsynchronousCallback(unsigned int BluetoothStackID,

unsigned long CallbackParameter)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 44 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function when it is called.

Return:

Non zero if successful.

Zero if an error occurred.

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

BSC_AcquireListLock

The following function is provided to allow a mechanism to acquire a global lock that can be used

to search lists that are maintained by modules (for resource tracking). This Lock CANNOT be

held while holding or acquiring any other lock. This functionality is provided to allow a

mechanism on smaller (embedded) systems so that individual modules (such as the HCI Drivers

and profiles) to do not have to waste resources for locks to protect their internal lists. The caller

MUST call the BSC_ReleaseListLock() function to release the lock when finished.

Note:

This function is only applicable in multi-threaded environments. This function always returns

that the stack TRUE in single threaded environments.

Prototype

Boolean_t BTPSAPI BSC_AcquireListLock(void);

Parameters:

Return:

BOOLEAN value, TRUE if the list lock was obtained successfully, FALSE if the lock

was unable to be obtained (or an error occurred).

Notes:

BSC_ReleaseListLock

The following function is provided to allow a mechansim for the caller to release the acquired list

lock (previously acquired via a successful call to the BSC_AcquireListLock() function).

Prototype

void BTPSAPI BSC_ReleaseListLock(void);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 45 of 737 January 10, 2014

Parameters:

Return:

Notes:

BSC_AddGenericListEntry_Actual

The following function is a utility function that adds the actual specified opaque list entry to the

specified opaque list entry list.

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

Valid values must be specified for the following parameters (or the function will fail):

- ListHead - parameter cannot be NULL, but the value that it points to can be NULL

- ListEntryToAdd - parameter cannot be NULL, and it must point to the List Entry Data

that is to be added (of size ListEntrySize)

If the GenericListEntryKey value is anything other than ekNone, then this function does not insert

duplicate entries into the list. An item is considered a duplicate if the Key value of the entry

being added matches any Key value of an entry already in the list. When this parameter is

ANYTHING OTHER THAN ekNone, then the following parameters must be specified:

- ListEntryKeyOffset - specifies the byte offset of the Generic List Entry Key Element (in

each individual List Entry)

In all cases, the ListEntryNextPointerOffset parameter MUST specify the byte offset of the

element that represents a pointer to the next element that is present in the list (for each individual

List Entry)

Prototype

Boolean_t BTPSAPI BSC_AddGenericListEntry_Actual(

BSC_Generic_List_Entry_Key_t GenericListEntryKey, unsigned int ListEntryKeyOffset,

unsigned ListEntryNextPointerOffset, void **ListHead, void *ListEntryToAdd);

Parameters:

GenericListEntryKey Key value type that is used to search for duplicates (see notes

above). This value must be one of:

ekNone

ekBoolean_t

ekByte_t

ekWord_t

ekDWord_t

ekBD_ADDR_t

ekEntryPointer

ekUnsignedInteger

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 46 of 737 January 10, 2014

ListEntryKeyOffset Offset (specified in bytes) from the beginning of the list entry

where the list entry key is located

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of the list entry

where the list entry next pointer is located

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

ListEntryToAdd Pointer to the actual list entry that is to be added to the specified

list (note that the offsets specified in the prior parameters are

applied to this address to resolve the correct locations)

Return:

BOOLEAN value, TRUE if the specified list entry was added to the specified list, or

FALSE if the entry was unable to be added (either invalid parameter or there was a

duplicate entry in the list).

BSC_AddGenericListEntry

The following function is a utility function that adds an opaque list entry (with the specified

opaque list entry information) to the specified opaque list entry list. This function does NOT add

the specified entry directly to the list. This function allocates an entry (of the correct sizes) and

copies the data from the specified entry into this newly allocated entry. This newly allocated

entry is then added to the specified list.

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

Valid values must be specified for the following parameters (or the function will fail):

- ListEntrySizeToAllocate - cannot be zero and MUST be greater than or equal to the

ListEntrySize parameter

- ListEntrySize - cannot be zero and MUST be less than or equal to the

ListEntrySizeToAllocate parameter

- ListHead - parameter cannot be NULL, but the value that it points to can be NULL

- ListEntryToAdd - parameter cannot be NULL, and it must point to the List Entry Data

that is to be added (of size ListEntrySize)

If the GenericListEntryKey value is anything other than ekNone, then this function does not insert

duplicate entries into the list. An item is considered a duplicate if the Key value of the entry

being added matches any Key value of an entry already in the list. When this parameter is

ANYTHING OTHER THAN ekNone, then the following parameters must be specified:

- ListEntryKeyOffset - specifies the byte offset of the Generic List Entry Key Element (in

each individual List Entry)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 47 of 737 January 10, 2014

In all cases, the ListEntryNextPointerOffset parameter MUST specify the byte offset of the

element that represents a pointer to the next element that is present in the list (for each individual

List Entry)

Prototype

Boolean_t BTPSAPI BSC_AddGenericListEntry(unsigned int ListEntrySizeToAllocate,

BSC_Generic_List_Entry_Key_t GenericListEntryKey, unsigned int ListEntryKeyOffset,

unsigned int ListEntrySize, unsigned ListEntryNextPointerOffset, void **ListHead,

void *ListEntryToAdd);

Parameters:

ListEntrySizeToAllocate Entire size (in bytes) of the entry to allocate. Note that this is

note the size of the list entry itself. This value must be AT-

LEAST the size of ListEntrySize, but can be specified larger.

This allows the ability to allocate extra space immediately after

the list entry.

GenericListEntryKey Key value type that is used to search for duplicates (see notes

above). This value must be one of:

ekNone

ekBoolean_t

ekByte_t

ekWord_t

ekDWord_t

ekBD_ADDR_t

ekEntryPointer

ekUnsignedInteger

ListEntryKeyOffset Offset (specified in bytes) from the beginning of the list entry

where the list entry key is located

ListEntrySize Specifies the size (in bytes) of the list entry size. This size is

used to copy the specified list entry information (final

parameter) to the newly allocated list entry.

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of the list entry

where the list entry next pointer is located

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

ListEntryToAdd Pointer to the actual list entry that is to be added to the specified

list (note that the offsets specified in the prior parameters are

applied to this address to resolve the correct locations)

Return:

BOOLEAN value, TRUE if a new list entry was added to the specified list, or FALSE if

the entry was unable to be added (either invalid parameter or there was a duplicate entry in

the list).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 48 of 737 January 10, 2014

BSC_SearchGenericListEntry

The following function is a utility function that allows the ability to search for a specific opaque

list entry (located in the specified opaque list entry list).

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

Prototype

void *BTPSAPI BSC_SearchGenericListEntry(

BSC_Generic_List_Entry_Key_t GenericListEntryKey,

void *GenericListEntryKeyValue, unsigned int ListEntryKeyOffset,

unsigned ListEntryNextPointerOffset, void **ListHead);

Parameters:

GenericListEntryKey Key value type that is used to search the entries. This value

must be one of:

ekBoolean_t

ekByte_t

ekWord_t

ekDWord_t

ekBD_ADDR_t

ekEntryPointer

ekUnsignedInteger

ListEntryKeyValue Pointer to the key value that is to matched for the search. The

actual data type that this value points to depends upon the value

of the previous parameter. Note that this value CANNOT be

NULL.

ListEntryKeyOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry key is located

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry next pointer is located

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

Return:

Non NULL value indicating success (a pointer to the entry that was found).

NULL value indicating that an entry was not located in the specified list.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 49 of 737 January 10, 2014

BSC_GetNextGenericListEntry

The following function is a utility function that allows the ability to find the next opaque list entry

give the specified opaque list entry list.

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

Prototype

void *BTPSAPI BSC_GetNextGenericListEntry(

BSC_Generic_List_Entry_Key_t GenericListEntryKey,

void *GenericListEntryKeyValue, unsigned int ListEntryKeyOffset,

unsigned ListEntryNextPointerOffset, void **ListHead);

Parameters:

GenericListEntryKey Key value type that is used to search the entries. This value

must be one of:

ekEntryPointer

ListEntryKeyValue Pointer to the key value that is to matched for the search. The

actual data type that this value points to depends upon the value

of the previous parameter. Note that this value CANNOT be

NULL.

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry next pointer is located

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

Return:

Non NULL value indicating success (a pointer to the entry that was found).

NULL value indicating that an entry was not located in the specified list.

BSC_DeleteGenericListEntry

The following function is a utility function that allows the ability to remove a specific opaque list

entry from the specified opaque list entry list. This function does NOT delete the memory for the

entry, it simply removes it from the list and returns a pointer to the newly removed entry.

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 50 of 737 January 10, 2014

This function does not free the resources of the element that was deleted from the List, it only

removes it from the list and returns a pointer to the element. The Next Pointer element of the

returned element will have it's value set to NULL.

It is the callers responsibility to free the memory that is occuppied by the specified list (when

finished) by calling the BSC_FreeGenericListEntryMemory() function.

Prototype

void *BTPSAPI BSC_DeleteGenericListEntry(

BSC_Generic_List_Entry_Key_t GenericListEntryKey,

void *GenericListEntryKeyValue, unsigned int ListEntryKeyOffset,

unsigned ListEntryNextPointerOffset, void **ListHead);

Parameters:

GenericListEntryKey Key value type that is used to search the entries. This value

must be one of:

ekBoolean_t

ekByte_t

ekWord_t

ekDWord_t

ekBD_ADDR_t

ekEntryPointer

ekUnsignedInteger

ListEntryKeyValue Pointer to the key value that is to matched for the search. The

actual data type that this value points to depends upon the value

of the previous parameter. Note that this value CANNOT be

NULL.

ListEntryKeyOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry key is located

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry next pointer is located

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

Return:

Non NULL value indicating success (a pointer to the entry that was removed).

NULL value indicating that an entry was not located in the specified list.

BSC_FreeGenericListEntryMemory

The following function is a utility function that allows the ability to free the memory for an

opaque list entry that was allocated via the BSC_FreeGenericListEntryMemory() function.

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 51 of 737 January 10, 2014

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

This function does not free any resources contained with the entry, it simply frees the memory of

the entry that passed in.

Prototype

void *BTPSAPI BSC_FreeGenericListEntryMemory(void *EntryToFree);

Parameters:

EntryToFree Pointer to the the actual opaque list entry memory that is be

freed.

Return:

BSC_DeleteGenericListEntryList

The following function is a utility function that removes every list entry (and frees each list entry

element) from the specified list.

Notes:

Opaque lists and list entries are a schema that allows any data structure to be added to a list (of

like structures). This schema is possible because all the routines that operate on the list (including

this one) are told the necessary structure offsets (and sizes) of each entry. The utility functions

also define the concept of a “key” that can be used for searching through the list.

This function does not free the resources of the element that was deleted from the List, it only

removes it from the list and frees the memory of each entry itself.

When this function returns, the list head will be set to NULL (indicating an empty list).

Prototype

void *BTPSAPI BSC_DeleteGenericListEntryList(void **ListHead

unsigned ListEntryNextPointerOffset);

Parameters:

ListHead Pointer to the location that holds a pointer to the first entry in

the list (the value at this location can be NULL for an empty

list, but this parameter cannot be NULL)

ListEntryNextPointerOffset Offset (specified in bytes) from the beginning of each list entry

where the list entry next pointer is located

Return:

2.2 HCI API

The Host Controller Interface (HCI) layer API of the Bluetooth Protocol Stack provides software

access to the HCI command interface to the baseband controller and link manager. This allows

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 52 of 737 January 10, 2014

access to hardware status and control registers. This API provides a uniform method of accessing

the Bluetooth baseband capabilities.

This API is organized into separate subsections primarily by the seven command groups as

specified in the Bluetooth Core Specification. In addition, there is a section on miscellaneous

commands/parameters and a section on the HCI events and the HCI LE meta events. Therefore,

the subsections that follow are:

2.2.2 Link Control Commands

2.2.3 Link Policy Commands

2.2.4 Host Controller & Baseband Commands

2.2.5 Informational Parameters

2.2.6 Status Parameters

2.2.7 Testing Commands

2.2.8 LE Controller Commands

2.2.9 Miscellaneous Commands/Parameters

2.2.10 HCI Event/Data Callbacks and Registration

2.2.11 HCI Events

2.2.12 HCI LE Meta Event Sub-events

Every API function has a return that is zero when no error occurs in processing the request, and is

one of the error conditions listed in the BTErrors.h Header File. In addition, the StatusResult

value returned with every HCI command is only valid if the API function return is zero. Possible

values for StatusResult are any of the HCI Error Codes listed below. The actual prototypes and

constants outlined in this section can be found in the HCIAPI.H header file in the Bluetopia

distribution.

2.2.1 HCI Error Codes

Bluetooth Version 1.0B

HCI_ERROR_CODE_NO_ERROR

HCI_ERROR_CODE_UNKNOWN_HCI_COMMAND

HCI_ERROR_CODE_NO_CONNECTION

HCI_ERROR_CODE_HARDWARE_FAILURE

HCI_ERROR_CODE_PAGE_TIMEOUT

HCI_ERROR_CODE_AUTHENTICATION_FAILURE

HCI_ERROR_CODE_KEY_MISSING

HCI_ERROR_CODE_MEMORY_FULL

HCI_ERROR_CODE_CONNECTION_TIMEOUT

HCI_ERROR_CODE_MAX_NUMBER_OF_CONNECTIONS

HCI_ERROR_CODE_MAX_NUMBER_OF_SCO_CONNECTIONS_TO_A_DEVICE

HCI_ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS

HCI_ERROR_CODE_COMMAND_DISALLOWED

HCI_ERROR_CODE_HOST_REJECTED_DUE_TO_LIMITED_RESOURCES

HCI_ERROR_CODE_HOST_REJECTED_DUE_TO_SECURITY_REASONS

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 53 of 737 January 10, 2014

HCI_ERROR_CODE_HOST_REJECTED_DUE_TO_REMOTE_DEVICE_IS_PERSONAL

HCI_ERROR_CODE_HOST_TIMEOUT

HCI_ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE

HCI_ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNECTION_USER_ENDED

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNECTION_LOW_RESOURCES

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNECTION_ABOUT_TO_PWR_OFF

HCI_ERROR_CODE_CONNECTION_TERMINATED_BY_LOCAL_HOST

HCI_ERROR_CODE_REPEATED_ATTEMPTS

HCI_ERROR_CODE_PAIRING_NOT_ALLOWED

HCI_ERROR_CODE_UNKNOWN_LMP_PDU

HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE

HCI_ERROR_CODE_SCO_OFFSET_REJECTED

HCI_ERROR_CODE_SCO_INTERVAL_REJECTED

HCI_ERROR_CODE_SCO_AIR_MODE_REJECTED

HCI_ERROR_CODE_INVALID_LMP_PARAMETERS

HCI_ERROR_CODE_UNSPECIFIED_ERROR

HCI_ERROR_CODE_UNSUPPORTED_LMP_PARAMETER_VALUE

HCI_ERROR_CODE_ROLE_CHANGE_NOT_ALLOWED

HCI_ERROR_CODE_LMP_RESPONSE_TIMEOUT

HCI_ERROR_CODE_LMP_ERROR_TRANSACTION_COLLISION

Bluetooth Version 1.1

HCI_ERROR_CODE_LMP_PDU_NOT_ALLOWED

HCI_ERROR_CODE_ENCRYPTION_MODE_NOT_ACCEPTABLE

HCI_ERROR_CODE_UNIT_KEY_USED

HCI_ERROR_CODE_QOS_NOT_SUPPORTED

HCI_ERROR_CODE_INSTANT_PASSED

HCI_ERROR_CODE_PAIRING_WITH_UNIT_KEY_NOT_SUPPORTED

Bluetooth Version 1.2

HCI_ERROR_CODE_SUCCESS

HCI_ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER

HCI_ERROR_CODE_PIN_MISSING

HCI_ERROR_CODE_MEMORY_CAPACITY_EXCEEDED

HCI_ERROR_CODE_CONNECTION_LIMIT_EXCEEDED

HCI_ERROR_CODE_SYNCHRONOUS_CONNECTION_LIMIT_TO_A_DEVICE_EXCEEDED

HCI_ERROR_CODE_CONNECTION_REJECTED_DUE_TO_LIMITED_RESOURCES

HCI_ERROR_CODE_CONNECTION_REJECTED_DUE_TO_SECURITY_REASONS

HCI_ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR

HCI_ERROR_CODE_CONNECTION_ACCEPT_TIMEOUT_EXCEEDED

HCI_ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION

HCI_ERROR_CODE_REMOTE_DEVICE_TERMINATED_CONNECTION_LOW_RESOURCES

HCI_ERROR_CODE_REMOTE_DEVICE_TERMINATED_CONNECTION_DUE_TO_PWR_OFF

HCI_ERROR_CODE_LINK_KEY_CANNOT_BE_CHANGED

HCI_ERROR_CODE_REQUESTED_QOS_NOT_SUPPORTED

HCI_ERROR_CODE_DIFFERENT_TRANSACTION_COLLISION

HCI_ERROR_CODE_QOS_UNACCEPTABLE_PARAMETER

HCI_ERROR_CODE_QOS_REJECTED

HCI_ERROR_CODE_CHANNEL_CLASSIFICATION_NOT_SUPPORTED

HCI_ERROR_CODE_INSUFFICIENT_SECURITY

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 54 of 737 January 10, 2014

HCI_ERROR_CODE_PARAMETER_OUT_OF_MANDATORY_RANGE

HCI_ERROR_CODE_ROLE_SWITCH_PENDING

HCI_ERROR_CODE_RESERVED_SLOT_VIOLATION

HCI_ERROR_CODE_ROLE_SWITCH_FAILED

Bluetooth Version 2.1

HCI_ERROR_CODE_EXTENDED_INQUIRY_RESPONSE_TOO_LARGE

HCI_ERROR_CODE_SECURE_SIMPLE_PAIRING_NOT_SUPPORTED_BY_HOST

HCI_ERROR_CODE_HOST_BUSY_PAIRING

Bluetooth Version 3.0

HCI_ERROR_CODE_CONNECTION_REJECTED_NO_SUITABLE_CHANNEL_FOUND

Bluetooth Version 4.0

HCI_ERROR_CODE_CONTROLLER_BUSY

HCI_ERROR_CODE_UNACCEPTABLE_CONNECTION_INTERVAL

HCI_ERROR_CODE_DIRECTED_ADVERTISING_TIMEOUT

HCI_ERROR_CODE_CONNECTION_FAILED_DUE_TO_MIC_FAILURE

HCI_ERROR_CODE_CONNECTION_FAILED_TO_BE_ESTABLISHED

HCI_ERROR_CODE_MAC_CONNECTION_FAILED

2.2.2 Link Control Commands

The Link Control commands are used to control the connections to other Bluetooth devices.

These commands direct the Link Manager (LM) portion of the HCI to create and modify the link

layer connections, and perform inquiries of other devices. Commands included in this section are

listed in the table below.

Command Description

HCI_Inquiry Discover other nearby Bluetooth

devices.

HCI_Inquiry_Cancel Stop the current Inquiry.

HCI_Periodic_Inquiry_Mode Perform an automatic Inquiry based on

a specified period range.

HCI_Exit_Periodic_Inquiry_Mode End the Periodic Inquiry mode.

HCI_Create_Connection Create an ACL connection to a

Bluetooth device.

HCI_Disconnect Terminate a connection.

HCI_Add_SCO_Connection Create an SCO connection using an

existing ACL connection.

HCI_Accept_Connection_Request Accept a new incoming connection

request.

HCI_Reject_Connection_Request Decline a new incoming connection

request.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 55 of 737 January 10, 2014

Command Description

HCI_Link_Key_Request_Reply Reply to a Link Key Request event

from the Host Controller if the Host has

a stored Link Key for the connection.

HCI_Link_Key_Request_Negative_Reply Reply to a Link Key Request event

from the Host Controller if the Host

does not have a stored Link Key for the

connection.

HCI_PIN_Code_Request_Reply Reply to a PIN Code Request event

from the Host Controller with the PIN

code to use for the connection.

HCI_PIN_Code_Request_Negative_Reply Reply to a PIN Code Request event

from the Host Controller when the Host

cannot specify a PIN code to use for a

connection.

HCI_Change_Connection_Packet_Type Change which packet types can be used

for a connection.

HCI_Authentication_Requested Establish authentication between the

two devices associated in a connection.

HCI_Set_Connection_Encryption Enable and disable the link level

encryption.

HCI_Change_Connection_Link_Key Force both devices in a connection to

generate a new Link Key.

HCI_Master_Link_Key Force both devices in a connection to

use the temporary link key of the

Master device or the regular Link Keys.

HCI_Remote_Name_Request Obtain the user-friendly name of

another device.

HCI_Read_Remote_Supported_Features Obtain a list of the supported features

of a remote device.

HCI_Read_Remote_Version_Information Obtain the version information for the

remote device.

HCI_Read_Clock_Offset Read the clock offset of a remote

device.

HCI_Create_Connection_Cancel Cancel an ongoing connection process.

HCI_Remote_Name_Request_Cancel Cancel an ongoing remote name request

process.

HCI_Read_Remote_Extended_Features Get the extended features from the

remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 56 of 737 January 10, 2014

Command Description

HCI_Read_LMP_Handle Read the remote LMP handle of the

remote device.

HCI_Setup_Synchronous_Connection Setup a synchronous connection.

HCI_Accept_Synchronous_Connection_Request Accept a synchronous connection

request.

HCI_Reject_Synchronous_Connection_Request Reject a synchronous connection

request.

HCI_IO_Capability_Request_Reply Reply to the IO capability request

HCI_User_Confirmation_Request_Reply Reply to the user confirmation request

HCI_User_Confirmation_Request_Negative_Reply A negative reply to the user

confirmation request

HCI_User_Passkey_Request_Reply Reply to the user passkey request

HCI_User_Passkey_Request_Negative_Reply Negative reply to the user passkey

request

HCI_Remote_OOB_Data_Request_Reply Reply to the out of band (OOB) data

request

HCI_Remote_OOB_Data_Request_Negative_Reply Negative reply to the OOBdata request

HCI_IO_Capability_Request_Negative_Reply Negative reply to the IO capability

request

HCI_Create_Physical_Link Issues HCI_Create_Physical_Link

command to Bluetooth device.

HCI_Accept_Physical_Link_Request Issues

HCI_Accept_Physical_Link_Request

command to Bluetooth device.

HCI_Disconnect_Physical_Link Issues HCI_Disconnect_Physical_Link

command to Bluetooth device.

HCI_Create_Logical_Link Issues HCI_Create_Logical_Link

command to Bluetooth device.

HCI_Accept_Logical_Link Issues HCI_Accept_Logical_Link

command to Bluetooth device.

HCI_Disconnect_Logical_Link Issues HCI_Disconnect_Logical_Link

command to Bluetooth device.

HCI_Logical_Link_Cancel Issues HCI_Logical_Link_Cancel

command to Bluetooth device.

HCI_Flow_Spec_Modify Issues HCI_Flow_Spec_Modify

command to Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 57 of 737 January 10, 2014

HCI_Inquiry

This command directs the Bluetooth device to go into Inquiry Mode in order to discover

other nearby Bluetooth devices. The device stays in the Inquiry Mode until the specified

length of time (Inquiry_Length) is reached or the maximum number of devices

(Num_Responses) is found.

Prototype:

int BTPSAPI HCI_Inquiry(unsigned int BluetoothStackID, LAP_t LAP,

Byte_t Inquiry_Length, Byte_t Num_Responses, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

LAP Lower address part of the Bluetooth device address.

Inquiry_Length Amount of time before the inquiry is halted.

Values are in increments of 1.28 seconds, with a range of 1.28

sec. (0x01) to 61.44 sec. (0x30).

Num_Responses Maximum number of Bluetooth devices to find before the

inquiry is halted. A value of zero (0) means unlimited.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etInquiry_Result_Event

etInquiry_Result_With_RSSI_Event
2

etInquiry_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2. This event is only possible on Bluetooth devices that adhere to the Bluetooth version

1.2 specification. Further, the inquiry mode has to be enabled via the

HCI_Write_Inquiry_Mode command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 58 of 737 January 10, 2014

HCI_Inquiry_Cancel

This command directs the Bluetooth device to stop the current Inquiry if the Bluetooth

device is in Inquiry Mode. The command should only be issued after the Inquiry

command has been issued, a Command Status event has been received for the Inquiry

command, and before the Inquiry Complete event occurs.

Prototype:

int BTPSAPI HCI_Inquiry_Cancel(unsigned int BluetoothStackID, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

 HCI_Periodic_Inquiry_Mode

This command directs the Bluetooth device to go into Periodic Inquiry Mode in which it

automatically tries to discover other nearby Bluetooth devices at random intervals as

bounded by the provided min and max period parameters. The device stays in the Inquiry

Mode each time it is started (at the end of the next random interval) until the specified

length of time (Inquiry_Length) is reached or the maximum number of devices

(Num_Responses) is found.

Prototype:

int BTPSAPI HCI_Periodic_Inquiry_Mode(unsigned int BluetoothStackID,

Word_t Max_Period_Length, Word_t Min_Period_Length, LAP_t LAP,

Byte_t Inquiry_Length, Byte_t Num_Responses, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 59 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Max_Period_Length Upper bound on random interval between inquiries.

Values are in increments of 1.28 seconds, with a range of 3.84

sec. (0x03) to ~23.3 hrs. (0xFFFE)

Min_Period_Length Lower bound on random interval between inquiries.

Values are in increments of 1.28 seconds, with a range of 2.56

sec. (0x02) to ~23.3 hrs. (0xFFFE)

LAP Lower address part of the Bluetooth device address.

Range: 0x9E8B00–0x9E8B3F

Inquiry_Length Amount of time before each inquiry is halted.

Values are in increments of 1.28 seconds, with a range of 1.28

sec. (0x01) to 61.44 sec. (0x30).

Num_Responses Maximum number of Bluetooth devices to find before each

inquiry is halted. A value of zero (0) means unlimited.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etInquiry_Result_Event

etInquiry_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Exit_Periodic_Inquiry_Mode

Command the Bluetooth device to exit the Periodic Inquiry Mode. If the device is

currently performing an inquiry, that inquiry is also cancelled.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 60 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Exit_Periodic_Inquiry_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Create_Connection

This command directs the Link Manager to create a connection to the Bluetooth device

specified by the command parameters. This command causes the local Bluetooth device

to start the Page process to create a link level connection (ACL link).

Prototype:

int BTPSAPI HCI_Create_Connection(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t Packet_Type, Byte_t Page_Scan_Repetition_Mode,

Byte_t Page_Scan_Mode, Word_t Clock_Offset, Byte_t Allow_Role_Switch,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address to connect to.

Packet_Type Which packet types the Link Manager shall use for the ACL

link. This can be an ORing of multiple packet types. The

currently defined packet types are:

HCI_PACKET_ACL_TYPE_DM1

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 61 of 737 January 10, 2014

HCI_PACKET_ACL_TYPE_DH1

HCI_PACKET_ACL_TYPE_DM3

HCI_PACKET_ACL_TYPE_DH3

HCI_PACKET_ACL_TYPE_DM5

HCI_PACKET_ACL_TYPE_DH5

Bluetooth Version 2.0

HCI_PACKET_ACL_TYPE_2_DH1_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH1_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH5_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH5_MAY_NOT_BE_USED

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the device being

connected to supports. This information is discovered during

the Inquiry mode. The currently defined values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Mode The other part of the supported Page Scan Modes that the device

being connected to supports. This information is discovered

during the Inquiry mode. The currently defined values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

Allow_Role_Switch Whether the local device will accept a role switch and become a

slave device or not. The currently defined values are:

HCI_ROLE_SWITCH_LOCAL_MASTER_NO_ROLE_SWITCH

HCI_ROLE_SWITCH_LOCAL_MASTER_ACCEPT_ROLE_SWITCH

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 62 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

etLink_Key_Request_Event

etPIN_Code_Request_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Disconnect

This command terminates an existing connection. All SCO connections on a physical link

should be disconnected before the ACL connection on the same physical connection is

disconnected.

Prototype:

int BTPSAPI HCI_Disconnect(unsigned int BluetoothStackID, Word_t Connection_Handle,

Byte_t Reason, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Reason The reason for ending the connection.

Subset of HCI Status Codes. Possible values are:

HCI_ERROR_CODE_OTHER_END_TERMINATED_

CONNECTION_USER_ENDED

HCI_ERROR_CODE_OTHER_END_TERMINATED_

CONNECTION_LOW_RESOURCES

HCI_ERROR_CODE_OTHER_END_TERMINATED_

CONNECTION_ABOUT_TO_PWR_OFF

HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 63 of 737 January 10, 2014

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etDisconnection_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Add_SCO_Connection

This command adds an SCO connection to the ACL link connection indicated

(Connection_Handle parameter).

Prototype:

int BTPSAPI HCI_Add_SCO_Connection(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Packet_Type, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection from which to base the SCO

link to the same remote device.

Packet_Type Which packet types the Link Manager shall use for the SCO

connection. This can be an ORing of multiple packet types.

The currently defined packet types are:

HCI_PACKET_SCO_TYPE_HV1

HCI_PACKET_SCO_TYPE_HV2

HCI_PACKET_SCO_TYPE_HV3

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 64 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Accept_Connection_Request

This command accepts a new incoming connection request after a Connection Request

event has been received. The Connection Request event provides the BD_ADDR of the

device which is requesting the connection. This address is then passed back to the Link

Manager in this command to create a connection to the device.

Prototype:

int BTPSAPI HCI_Accept_Connection_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Role, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address for the device to connect to.

Role Designate the master-slave role to take on in this connection.

Possible Values are:

HCI_ROLE_SWITCH_BECOME_MASTER

HCI_ROLE_SWITCH_REMAIN_SLAVE

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 65 of 737 January 10, 2014

Possible Events:

etConnection_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Reject_Connection_Request

This command rejects a new incoming connection request after a Connection Request

event has been received. The Connection Request event provides the BD_ADDR of the

device which is requesting the connection.

Prototype:

int BTPSAPI HCI_Reject_Connection_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Reason, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address for the device to connect to.

Reason The reason for the refusal. Possible values:

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_LIMITED_RESOURCES

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_SECURITY_REASONS

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_REMOTE_DEVICE_IS_PERSONAL

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 66 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Link_Key_Request_Reply

This command is one of two ways to respond to a Link Key Request event, specifying a

link key to use for the connection. The Link Key Request event is generated when the

Host Controller needs a Link Key for the connection.

Prototype:

int BTPSAPI HCI_Link_Key_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Link_Key_t Link_Key, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device that the link key is for.

Link_Key 16-Byte Link Key to use to make the connection.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the link

key request reply was completed.

Return: Zero if successful. An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Link_Key_Request_Negative_Reply

This command is one of two ways to respond to a Link Key Request event, indicating that

the local host does not have the link key for the remote device. The Link Key Request

event is generated when the Host Controller needs a Link Key for the connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 67 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Link_Key_Request_Negative_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device that the link key is for.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the link

key request negative reply was completed.

Return: Zero if successful. An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etPIN_Code_Request_Reply

etAuthentication_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_PIN_Code_Request_Reply

This command is one of two ways to respond to a PIN Code Request event, specifying a

PIN Code to use for the connection. The PIN Code Request event is generated when a

connection with a remote device requests a pairing.

Prototype:

int BTPSAPI HCI_PIN_Code_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t PIN_Code_Length, PIN_Code_t PIN_Code,

Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device which the PIN Code is for.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 68 of 737 January 10, 2014

PIN_Code_Length The length in bytes of the PIN Code in the range of 0x01 to

0x10.

PIN_Code The PIN Code for the device being connected, with the MSB in

byte zero.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the PIN

Code request reply was completed.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etLink_Key_Notification_Event

etAuthentication_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_PIN_Code_Request_Negative_Reply

This command is one of two ways to respond to a PIN Code Request event, indicating that

local host does not have the PIN Code for the remote device. This causes the pairing

request from the remote device to fail.

Prototype:

int BTPSAPI HCI_PIN_Code_Request_Negative_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device which the PIN Code is for.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the PIN

Code request negative reply was completed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 69 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etAuthentication_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Change_Connection_Packet_Type

This command changes which packet types can be used on an established connection.

This function is used to dynamically modify a connection to support different user data

types.

Prototype:

int BTPSAPI HCI_Change_Connection_Packet_Type(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Packet_Type, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the connection returned in the Connection Complete

event associated with the HCI_Create_Connection command.

Packet_Type Which packet types the Link Manager shall use for the ACL

link. This can be an ORing of multiple packet types. The

currently defined packet types are –

For ACL Links:

HCI_PACKET_ACL_TYPE_DM1

HCI_PACKET_ACL_TYPE_DH1

HCI_PACKET_ACL_TYPE_DM3

HCI_PACKET_ACL_TYPE_DH3

HCI_PACKET_ACL_TYPE_DM5

HCI_PACKET_ACL_TYPE_DH5

Bluetooth Version 2.0

HCI_PACKET_ACL_TYPE_2_DH1_MAY_NOT_BE_USED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 70 of 737 January 10, 2014

HCI_PACKET_ACL_TYPE_3_DH1_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH5_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH5_MAY_NOT_BE_USED

 For SCO Links:

HCI_PACKET_SCO_TYPE_HV1

HCI_PACKET_SCO_TYPE_HV2

HCI_PACKET_SCO_TYPE_HV3

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Packet_Type_Changed_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Authentication_Requested

This command attempts to authenticate the remote device associated with the specified

Connection Handle for an ACL link. This command must not be used with a

Connection_Handle corresponding to an encrypted link.

Prototype:

int BTPSAPI HCI_Authentication_Requested(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 71 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etAuthentication_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_Connection_Encryption

This command enables or disables link level encrytion for an ACL link. All ACL link

traffic for the connection must be turned off while the encrytion is changed.

Prototype:

int BTPSAPI HCI_Set_Connection_Encryption(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t Encryption_Enable, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Encryption_Enable Flag indicating whether the encryption should be turned on or

off. Possible values are:

HCI_ENCRYPTION_ENABLE_LINK_LEVEL_OFF

HCI_ENCRYPTION_ENABLE_LINK_LEVEL_ON

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 72 of 737 January 10, 2014

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etEncryption_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Change_Connection_Link_Key

This command forces both sides of a connection to generate a new link key for an ACL

link.

Prototype:

int BTPSAPI HCI_Change_Connection_Link_Key(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etLink_Key_Notification_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 73 of 737 January 10, 2014

HCI_Master_Link_Key

This command forces the device that is master to use either the temporary link key of the

master device, or the semi-permanent link keys.

Prototype:

int BTPSAPI HCI_Master_Link_Key(unsigned int BluetoothStackID, Byte_t Key_Flag,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Key_Flag Indicator of which link key to change to. Possible values are:

HCI_MASTER_LINK_KEY_USE_SEMI_PERMANENT_

LINK_KEYS

HCI_MASTER_LINK_KEY_USE_TEMPORARY_

LINK_KEYS

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etMaster_Link_Key_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Remote_Name_Request

This command obtains the user-friendly name for the remote Bluetooth device.

Prototype:

int BTPSAPI HCI_Remote_Name_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Page_Scan_Repetition_Mode,

Byte_t Page_Scan_Mode, Word_t Clock_Offset, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 74 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the device being

connected to supports. This information is discovered during

the Inquiry mode. Possible values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Mode The other part of the supported Page Scan Modes that the device

being connected to supports. This information is discovered

during the Inquiry mode. Possible values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRemote_Name_Request_Complete_Event

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 75 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Remote_Supported_Features

This command requests a list of the supported features for the remote device, via the ACL

link to that device.

Prototype:

int BTPSAPI HCI_Read_Remote_Supported_Features(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRead_Remote_Supported_Features_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Remote_Version_Information

This command obtains the version information for the remote device.

Prototype:

int BTPSAPI HCI_Read_Remote_Version_Information(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 76 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRead_Remote_Version_Information_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Clock_Offset

This command reads the clock offset of the remote device connected via an ACL link.

This offset is used for frequency hopping and as an input into other functions.

Prototype:

int BTPSAPI HCI_Read_Clock_Offset(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection to the remote device.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 77 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRead_Clock_Offset_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Create_Connection_Cancel

This command is used to request cancellation of an ongoing connection creation process,

which was started by a HCI_Create_Connection command issued to the local device.

Prototype:

int BTPSAPI HCI_Create_Connection_Cancel(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the create

connection cancel reply was completed.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 78 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Remote_Name_Request_Cancel

This command is used to request cancellation of the ongoing remote name request

process, which was started by the HCI_Remote_Name_Request command.

Prototype:

int BTPSAPI HCI_Remote_Name_Request_Cancel(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult Returned HCI status code.

BD_ADDRResult Pointer for return value of Bluetooth device for which the create

connection cancel reply was completed.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Remote_Extended_Features

This command returns the requested page of the extended LMP features for the remote

device identified by the specified connection handle. The connection handle must be a

connection handle for an ACL connection. This command is only available if the extended

features feature is implemented by the remote device. The

etRead_Remote_Extended_Features_Complete event will return the requested

information.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 79 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Remote_Extended_Features(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t Page_Number, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection to the remote device.

Page_Number The Page Number of the Extended Features Mask that is to be

returned. Passing zero for this parameter returns the normal

LMP features mask.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRead_Remote_Extended_Features_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_LMP_Handle

This command will read the current LMP Handle associated with the specified connection

handle. The connection handle must be a SCO or eSCO Handle. If the connection handle

is a SCO connection handle, then this command will read the LMP SCO handle for this

connection. If the connection handle is an eSCO connection handle, then this command

will read the LMP eSCO Handle for the specified connection.

Prototype:

int BTPSAPI HCI_Read_LMP_Handle(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Byte_t *LMP_HandleResult, DWord_t *ReservedResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 80 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection to the remote device.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the read

LMPhandle was done.

LMP_HandleResult LMP handle from the remote device.

ReservedResult Reserved result from the remote device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Setup_Synchronous_Connection

This command adds a new, or modifies an existing, synchronous logical transport (SCO or

eSCO) on a physical link depending on the Connection_Handle parameter specified. If

the connection handle refers to an ACL link a new synchronous logical transport will be

added. If the connection handle refers to an already existing synchronous logical transport

(eSCO only), then the link will be modified. The parameters are specified per connection.

This synchronous connection can be used to transfer synchronous voice at 64kbps or

transparent synchronous data.

Prototype:

int BTPSAPI HCI_Setup_Synchronous_Connection(unsigned int BluetoothStackID,

Word_t Connection_Handle, DWord_t Transmit_Bandwidth,

DWord_t Receive_Bandwidth, Word_t Max_Latency, Word_t Voice_Setting,

Byte_t Retransmission_Effort, Word_t Packet_Type, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 81 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle for the ACL connection to the remote device.

Transmit_Bandwidth Amount of bandwidth available for transmit.

Receive_Bandwidth Amount of bandwidth available for receive.

Max_Latency Upper limit of the time (in milliseconds) between the eSCO (or

SCO) instants, plus the size of the retransmission window, plus

the length of the reserved synchronous slots for this logical

transport. This must fall in the range defined by the following

constants:

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_M

INIMUM

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_M

AXIMUM

 or be the following defined value:

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_D

ONT_CARE

Voice_Setting Indicates if this connection is for voice or transparent data. This

is the Logical OR’ing of bits in five categories as defined by

the following masks:

HCI_VOICE_SETTING_INPUT_CODING_MASK

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_MASK

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_MASK

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_NUM_MASK

HCI_VOICE_SETTING_AIR_CODING_FORMAT_MASK

the Input Coding bits which may be set are:

HCI_VOICE_SETTING_INPUT_CODING_LINEAR

HCI_VOICE_SETTING_INPUT_CODING_U_LAW

HCI_VOICE_SETTING_INPUT_CODING_A_LAW

the Input Data Format bits which may set are:

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

1_COMPLEMENT

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

2_COMPLEMENT

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

SIGN_MAGNITUDE

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

UNSIGNED

the Input Sample Size which may set are:

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_8_BIT

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_16_BIT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 82 of 737 January 10, 2014

the Linear PCM Bit Position Shift Value bits which may be set

are:

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_

NUM_SHIFT_VALUE

the Air Coding Format bits which may be set are:

Bluetooth Version 1.1

HCI_VOICE_SETTING_AIR_CODING_FORMAT_CVSD

HCI_VOICE_SETTING_AIR_CODING_FORMAT_U_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_A_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_NONE

Bluetooth Version 1.2

HCI_VOICE_SETTING_AIR_CODING_FORMAT_

TRANSPARENT_DATA

Retransmission_Effort The extra resources that are allocated to this connection if a

packet needs to be retransmitted. The Retransmission_Effort

parameter shall be set to indicate the required behaviour, or to

don't care. Possible values are:

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_NONE

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_ONE_OPTIMIZE_POWER

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_ONE_OPTIMIZE_QUALITY

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_DONT_CARE

Packet_Type A bitmask specifying which packet types the LM shall accept in

the negotiation of the link parameters. This is a Logical OR’ing

of bit values for the packet types as defined by the following

values:

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V1

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V2

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V3

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V1

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V2

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V3

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 83 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

etSynchronous_Connection_Complete_Event

etSynchronous_Connection_Changed_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Accept_Synchronous_Connection_Request

This command is used to accept an incoming request for a synchronous connection and to

inform the local Link Manager about the acceptable parameter values for the synchronous

connection. This Command shall only be issued after an etConnection_Request_Event

event with link type SCO or eSCO has been received. The connection request event

contains the BD_ADDR of the device requesting the connection. The decision to accept

an incoming connection must be taken before the connection accept timeout expires on the

local device.

Prototype:

int BTPSAPI HCI_Accept_Synchronous_Connection_Request(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

DWord_t Transmit_Bandwidth, DWord_t Receive_Bandwidth, Word_t Max_Latency,

Word_t Content_Format, Byte_t Retransmission_Effort, Word_t Packet_Type,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Transmit_Bandwidth Amount of bandwidth available for transmit. This must fall in

the range defined by the following constants:

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_TRANSMIT_

BANDWIDTH_MINIMUM

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 84 of 737 January 10, 2014

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_TRANSMIT_

BANDWIDTH_MAXIMUM

or be the following defined value:

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_TRANSMIT_

BANDWIDTH_DONT_CARE

Receive_Bandwidth Amount of bandwidth available for receive. This must fall in

the range defined by the following constants:

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_RECEIVE_B

ANDWIDTH_MINIMUM

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_RECEIVE_B

ANDWIDTH_MAXIMUM

or be the following defined value:

HCI_SYNCHRONOUS_CONNECTION_ACCEPT_RECEIVE_B

ANDWIDTH_DONT_CARE

Max_Latency Upper limit of the time (in milliseconds) between the eSCO (or

SCO) instants, plus the size of the retransmission window, plus

the length of the reserved synchronous slots for this logical

transport. This must fall in the range defined by the following

constants:

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_M

INIMUM

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_M

AXIMUM

 or be the following defined value:

HCI_SYNCHRONOUS_CONNECTION_MAX_LATENCY_D

ONT_CARE

Content_Format Indicates if this connection is for voice or transparent data. This

is a Logical OR’ing of bits in five categories as defined by the

following bit masks:

HCI_VOICE_SETTING_INPUT_CODING_MASK

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_MASK

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_MASK

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_NUM_MASK

HCI_VOICE_SETTING_AIR_CODING_FORMAT_MASK

the Input Coding bit values which may be set are:

HCI_VOICE_SETTING_INPUT_CODING_LINEAR

HCI_VOICE_SETTING_INPUT_CODING_U_LAW

HCI_VOICE_SETTING_INPUT_CODING_A_LAW

the Input Data Format bit values which may set are:

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

1_COMPLEMENT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 85 of 737 January 10, 2014

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

2_COMPLEMENT

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

SIGN_MAGNITUDE

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

UNSIGNED

the Input Sample Size values which may set are:

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_8_BIT

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_16_BIT

the Linear PCM Bit Position Shift Value bits which may be set

are:

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_

NUM_SHIFT_VALUE

the Air Coding Format bit values which may be set are:

Bluetooth Version 1.1

HCI_VOICE_SETTING_AIR_CODING_FORMAT_CVSD

HCI_VOICE_SETTING_AIR_CODING_FORMAT_U_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_A_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_NONE

Bluetooth Version 1.2

HCI_VOICE_SETTING_AIR_CODING_FORMAT_

TRANSPARENT_DATA

Retransmission_Effort Specifies the extra resources that are allocated to this connection

if a packet may need to be retransmitted. The

Retransmission_Effort parameter shall be set to indicate the

required behaviour, or to don't care. Possible values are:

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_NONE

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_ONE_OPTIMIZE_POWER

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_ONE_OPTIMIZE_QUALITY

HCI_SYNCHRONOUS_CONNECTION_RETRANSMISSION_

EFFORT_DONT_CARE

Packet_Type A bitmask specifying which packet types the LM shall accept in

the negotiation of the link parameters. This is a Logical OR’ing

of bit values for the packet types as defined by the following

values:

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V1

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V2

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_H

V3

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 86 of 737 January 10, 2014

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V1

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V2

HCI_PACKET_SYNCHRONOUS_CONNECTION_TYPE_E

V3

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

etSynchronous_Connection_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Reject_Synchronous_Connection_Request

This command is used to decline an incoming request for a synchronous link. It shall only

be issued after a etConnection_Request_Event has been received with Link Type equal

to the SCO or eSCO type.

Prototype:

int BTPSAPI HCI_Reject_Synchronous_Connection_Request(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Byte_t Reason,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Reason Host reject error code returned to the initiating host in the Status

parameter of the Synchronous connection complete event on the

remote side. Possible values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 87 of 737 January 10, 2014

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_LIMITED_RESOURCES

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_SECURITY_REASONS

HCI_ERROR_CODE_HOST_REJECTED_DUE_

TO_REMOTE_DEVICE_IS_PERSONAL

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etConnection_Complete_Event

etSynchronous_Connection_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_IO_Capability_Request_Reply

This function issues the HCI_IO_Capability_Request_Reply Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_IO_Capability_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t IO_Capability, Byte_t OOB_Data_Present, Byte_t

Authentication_Requirements, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

IO_Capability IO Capabilities of the local device. Possible values:

HCI_IO_CAPABILITY_DISPLAY_ONLY

HCI_IO_CAPABILITY_DISPLAY_YES_NO

HCI_IO_CAPABILITY_KEYBOARD_ONLY

HCI_IO_CAPABILITY_NO_INPUT_NO_OUTPUT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 88 of 737 January 10, 2014

OOB_Data_Present Specifies whether or not OOB Data for the remote Bluetooth

device is present (zero signifies not present).

Authentication_Requirements Authentication Requirements of the local device. Possible

 values:

HCI_AUTHENTICATION_REQUIREMENTS_MITM_

PROTECTION_NOT_REQUIRED_NO_BONDING

HCI_AUTHENTICATION_REQUIREMENTS_MITM_

PROTECTION_NOT_REQUIRED_DEDICATED_BONDING

HCI_AUTHENTICATION_REQUIREMENTS_MITM_

PROTECTION_NOT_REQUIRED_GENERAL_BONDING

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_User_Confirmation_Request_Reply

This function issues the HCI_User_Confirmation_Request_Reply Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stackspecified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_User_Confirmation_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 89 of 737 January 10, 2014

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_User_Confirmation_Request_Negative_Reply

This function issues the HCI_User_Confirmation_Request_Negative_Reply Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_User_Confirmation_Request_Negative_Reply(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_User_Passkey_Request_Reply

This function issues the HCI_User_Passkey_Request_Reply Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 90 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_User_Passkey_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, DWord_t Numeric_Value, Byte_t *StatusResult, BD_ADDR_t

*BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Numeric_Value Actual passkey value. This value must be between 0 and

999999.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_User_Passkey_Request_Negative_Reply

This function issues the HCI_User_Passkey_Request_Negative_Reply Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_User_Passkey_Request_Negative_Reply(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 91 of 737 January 10, 2014

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Remote_OOB_Data_Request_Reply

This function issues the HCI_Remote_OOB_Data_Request_Reply Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Remote_OOB_Data_Request_Reply(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Simple_Pairing_Hash_t Simple_Pairing_Hash,

Simple_Pairing_Randomizer_t Simple_Pairing_Randomizer, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Simple_Pairing_Hash Simple pairing of the OOB data that was received for the remote

device (C).

Simple_Pairing_Randomizer Simple pairing randomizer of the OOB data that was received

for the remote device (R)

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 92 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Remote_OOB_Data_Request_Negative_Reply

This function issues the HCI_Remote_OOB_Data_Request_Negative_Reply Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Remote_OOB_Data_Request_Negative_Reply(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_IO_Capability_Request_Negative_Reply

This function issues the HCI_IO_Capability_Request_Negative_Reply Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_IO_Capability_Request_Negative_Reply(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Byte_t Reason,

Byte_t *StatusResult, BD_ADDR_t *BD_ADDRResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 93 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the remote Bluetooth device.

Reason Reason code for the IO Capability rejection. Possible values are

the HCI Status Codes.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDR Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Create_Physical_Link

Issues the HCI_Create_Physical_Link command to the Bluetooth device that is associated

to the specified Bluetooth Protocol Stack (which is specified with the BluetoothStackID

parameter). Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Create_Physical_Link(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Byte_t Dedicated_AMP_Key_Length, Byte_t

Dedicated_AMP_Key_Type, Byte_t Dedicated_AMP_Key[], Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Physical_Link_Handle Physical Link Handle indentifing the physical link to be

created.

Dedicated_AMP_Key_Length The number of valid octets (bytes) in the

Dedicated_AMP_Key parameter.

Dedicated_AMP_Key_Type Indicates the type of key that the parameter

Dedicated_AMP_Key[] is. Valid values are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 94 of 737 January 10, 2014

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

DEBUG_COMBINATION_KEY

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

UNAUTHENTICATED_COMBINATION_

KEY

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

AUTHENTICATED_COMBINATION_KEY

 All other values are reserved.

Dedicated_AMP_Key[] Byte array with Dedicated_AMP_Key_Length valid bytes

that will be used to generate a session key in order to encrypt

all data on the physical link specified by

Physical_Link_Handle.

StatusResult If this function returns zero (success) then variable pointed to

by StatusResult will contain the status result returned from

the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etPhysical_Link_Complete_Event

etChannel_Selected_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Accept_Physical_Link_Request

Issues the HCI_Accept_Physical_Link_Request to the Bluetooth device that is associated

with the Bluetooth Protocol stack (which itself is specified with the BluetoothStackID

parameter. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Accept_Physical_Link_Request(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Byte_t Dedicated_AMP_Key_Length, Byte_t

Dedicated_AMP_Key_Type, Byte_t Dedicated_AMP_Key[], Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 95 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Dedicated_AMP_Key_Length The number of valid octets (bytes) in the

Dedicated_AMP_Key parameter.

Dedicated_AMP_Key_Type Indicates the type of key that the parameter

Dedicated_AMP_Key[] is. Valid values are:

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

DEBUG_COMBINATION_KEY

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

UNAUTHENTICATED_COMBINATION_

KEY

HCI_PHYSICAL_LINK_LINK_KEY_TYPE_

AUTHENTICATED_COMBINATION_KEY

 All other values are reserved.

Dedicated_AMP_Key[] Byte array with Dedicated_AMP_Key_Length valid bytes

that will be used to generate a session key in order to encrypt

all data on the physical link specified by

Physical_Link_Handle.

StatusResult If this function returns zero (success) then variable pointed to

by StatusResult will contain the status result returned from

the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etPhysical_Link_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 96 of 737 January 10, 2014

HCI_Disconnect_Physical_Link

Issues the HCI_Disconnect_Physical_Link command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). Note, this function blocks until either a result is returned

from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_Disconnect_Physical_Link(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Byte_t Reason, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Physical_Link_Handle Physical Link Handle identifying the physical link which has

been created.

Reason Byte value indicating the reason that the specified physical link

is being disconnected. The remote controller will receive this

parameter in the

etDisconnection_Physical_Link_Complete_Event event.

Possible values are:

HCI_ERROR_CODE_AUTHENTICATION_FAILURE

HCI_ERROR_CODE_REMOTE_USER_TERMINATED_

CONNECTION

HCI_ERROR_CODE_REMOTE_DEVICE_TERMINATED_

CONNECTION_LOW_RESOURCES

HCI_ERROR_CODE_REMOTE_DEVICE_TERMINATED_

CONNECTION_DUE_TO_PWR_OFF

HCI_ERROR_CODE_CONNECTION_TERMINATED_

BY_LOCAL_HOST

HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etDisconnection_Physical_Link_Complete_Event

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 97 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Create_Logical_Link

Issues the HCI_Create_Logical_Link command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Create_Logical_Link(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, HCI_Extended_Flow_Spec_Data_t *Tx_Flow_Spec,

HCI_Extended_Flow_Spec_Data_t *Rx_Flow_Spec, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Physical_Link_Handle Handle of the physical link over which the logical link will be

created.

Tx_Flow_Spec Extended flow specification value that defines the transmitted

traffic.

Rx_Flow_Spec Extended flow specification value that defines the received

traffic.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etLogical_Link_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 98 of 737 January 10, 2014

HCI_Accept_Logical_Link

Issues the HCI_Accept_Logical_Link command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Accept_Logical_Link(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, HCI_Extended_Flow_Spec_Data_t *Tx_Flow_Spec,

HCI_Extended_Flow_Spec_Data_t *Rx_Flow_Spec, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Physical_Link_Handle Handle of the physical link over which the logical link will be

created.

Tx_Flow_Spec Extended flow specification value that defines the transmitted

traffic.

Rx_Flow_Spec Extended flow specification value that defines the received

traffic.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etLogical_Link_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 99 of 737 January 10, 2014

HCI_Disconnect_Logical_Link

Issues the HCI_Disconnect_Logical_Link command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). Note, this function blocks until either a result is returned

from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_Disconnect_Logical_Link(unsigned int BluetoothStackID,

Word_t Logical_Link_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Logical_Link_Handle Handle of the logical link that is to be disconnected.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etDisconnection_Logical_Link_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Logical_Link_Cancel

Issues the HCI_Logical_Link_Cancel command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Logical_Link_Cancel(unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Byte_t Tx_Flow_Spec_ID, Byte_t *StatusResult,

Byte_t *Physical_Link_HandleResult, Byte_t *Tx_Flow_Spec_IDResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 100 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Physical_Link_Handle Physical link handle for the physical link over which the logical

link was being established.

Tx_Flow_Spec_ID Flow Spec ID identifying th logical link whose creation is being

cancelled.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Physical_Link_HandleResult If this function returns zero (success) then the variable pointed

to by Physical_Link_HandleResult will contain the Physical

Link Handle returned from the Bluetooth device.

Tx_Flow_Spec_IDResult If this function returns zero (success) then the variable pointed

to by Tx_Flow_Spec_IDResult will contain the Tx Flow Spec

ID returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etLogical_Link_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Flow_Spec_Modify

Issues the HCI_Flow_Spec_Modify command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Flow_Spec_Modify(unsigned int BluetoothStackID,

Word_t Handle, HCI_Extended_Flow_Spec_Data_t *Tx_Flow_Spec,

HCI_Extended_Flow_Spec_Data_t *Rx_Flow_Spec, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 101 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Handle Logical Handle of the logical connection whose Flow Spec will

be modified.

Tx_Flow_Spec Extended flow specification value that defines the transmitted

traffic.

Rx_Flow_Spec Extended flow specification value that defines the received

traffic.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etFlow_Spec_Modify_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.3 Link Policy Commands

The Link Policy Commands provides a means to affect the Link Manager’s (LM) operation.

Commands included in this section are listed in the table below.

Command Description

HCI_Hold_Mode Direct the Link Manager to place the local or

remote device into the hold mode.

HCI_Sniff_Mode Direct the Link Manager to place the local or

remote device into the sniff mode.

HCI_Exit_Sniff_Mode End the sniff mode

HCI_Park_Mode Direct the Link Manager to place the local or

remote device into the Park mode.

HCI_Exit_Park_Mode Switch the Bluetooth device from park mode back

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 102 of 737 January 10, 2014

Command Description

to active mode.

HCI_QoS_Setup Specify the Quality of Service parameters for a

connection.

HCI_Role_Discovery Determine which role a Bluetooth device is

performing for a particular connection.

HCI_Switch_Role Switch the current role that a Bluetooth device is

performing for a particular connection.

HCI_Read_Link_Policy_Settings Read the Link Policy settings for the specified

Connection.

HCI_Write_Link_Policy_Settings Write the Link Policy settings for the specified

Connection.

HCI_Read_Default_Link_Policy_Settings Read the default Link Policy settings for the

specified connection.

HCI_ Write_Default_Link_Policy_Settings Write the default Link Policy settings for the

specified connection.

HCI_ Flow_Specification Specify the flow parameters for the traffic carried

over the specified ACL connection.

HCI_Sniff_Subrating Set the sniff subrating

HCI_Hold_Mode

This command places the specified connection into Hold Mode as per the specified

parameters.

Prototype:

int BTPSAPI HCI_Hold_Mode(unsigned int BluetoothStackID, Word_t Connection_Handle,

Word_t Hold_Mode_Max_Interval, Word_t Hold_Mode_Min_Interval,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Hold_Mode_Max_Interval Maximum time to stay in Hold Mode. Values are number of

baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 103 of 737 January 10, 2014

Hold_Mode_Min_Interval Minimum time to stay in Hold Mode. Values are number of

baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF)

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etMode_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Sniff_Mode

This command places the specified connection into Sniff Mode as per the specified

parameters.

Prototype:

int BTPSAPI HCI_Sniff_Mode(unsigned int BluetoothStackID, Word_t Connection_Handle,

Word_t Sniff_Max_Interval, Word_t Sniff_Min_Interval, Word_t Sniff_Attempt,

Word_t Sniff_Timeout, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Sniff_Max_Interval Maximum time between each sniff period. Values are number

of baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF).

Sniff_Min_Interval Minimum time between each sniff period. Values are number

of baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 104 of 737 January 10, 2014

Sniff_Attempt Amount of time for each sniff attempt. Values are number of

baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF).

Sniff_Timeout Amount of time for sniff timeout. Values are number of

baseband slots (0.625 msec), with a range of 0.625 msec

(0x0001) to 40.9 sec (0xFFFF).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etMode_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Exit_Sniff_Mode

This command terminates the Sniff Mode for a connection.

Prototype:

int BTPSAPI HCI_Exit_Sniff_Mode(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 105 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etMode_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Park_Mode

This command places a connection into Park Mode.

Prototype:

int BTPSAPI HCI_Park_Mode(unsigned int BluetoothStackID, Word_t Connection_Handle,

Word_t Beacon_Max_Interval, Word_t Beacon_Min_Interval, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Beacon_Max_Interval Maximum time between consecutive beacons. Values are

number of baseband slots (0.625 msec), with a range of 0.625

msec (0x0001) to 40.9 sec (0xFFFF).

Beacon_Min_Interval Minimum time between consecutive beacons. Values are

number of baseband slots (0.625 msec), with a range of 0.625

msec (0x0001) to 40.9 sec (0xFFFF).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 106 of 737 January 10, 2014

Possible Events:

etMode_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Exit_Park_Mode

This command terminates Park Mode for a connection.

Prototype:

int BTPSAPI HCI_Exit_Park_Mode(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etMode_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_QoS_Setup

This command specifies the Quality of Service parameters for a connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 107 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_QoS_Setup(unsigned int BluetoothStackID, Word_t Connection_Handle,

Byte_t Flags, Byte_t Service_Type, DWord_t Token_Rate, DWord_t Peak_Bandwidth,

DWord_t Latency, DWord_t Delay_Variation, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags (reserved for future use)

Service_Type The type of service to establish. Possible values are:

HCI_QOS_SERVICE_TYPE_NO_TRAFFIC

HCI_QOS_SERVICE_TYPE_BEST_EFFORT

HCI_QOS_SERVICE_TYPE_GUARANTEED

Token_Rate Token Rate in bytes per second.

Peak_Bandwidth Peak Bandwidth in bytes per second.

Latency Latency in microseconds.

Delay_Variation Delay Variation in microseconds.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etQoS_Setup_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Role_Discovery

This command determines what role a device is playing in a connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 108 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Role_Discovery(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Byte_t *Current_RoleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the role

discovery was done.

Current_RoleResult The current role for the Connection_HandleResult. Possible

values are:

HCI_CURRENT_ROLE_MASTER

HCI_CURRENT_ROLE_SLAVE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Switch_Role

This command switches the current role a device is playing in a connection.

Prototype:

int BTPSAPI HCI_Switch_Role(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

Byte_t Role, Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 109 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

BD_ADDR Address of the Bluetooth device.

Role Role for this device to take on. Possible values are:

HCI_CURRENT_ROLE_MASTER

HCI_CURRENT_ROLE_SLAVE

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etRole_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Link_Policy_Settings

This command reads the link policy settings for the specified connection.

Prototype:

int BTPSAPI HCI_Read_Link_Policy_Settings(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Word_t *Link_Policy_SettingsResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 110 of 737 January 10, 2014

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the policy

reading was done.

Link_Policy_SettingsResult The current link policy settings for the

Connection_HandleResult connection. Bits in this word are a

possible ORing of the following bit masks:

HCI_LINK_POLICY_SETTINGS_DISABLE_ALL_

LM_MODES

HCI_LINK_POLICY_SETTINGS_ENABLE_MASTER_

SLAVE_SWITCH

HCI_LINK_POLICY_SETTINGS_ENABLE_HOLD_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_SNIFF_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_PARK_MODE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Link_Policy_Settings

This command will write the link policy settings for the specified connection.

Prototype:

int BTPSAPI HCI_Write_Link_Policy_Settings(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Link_Policy_Settings, Byte_t *StatusResult, Word_t

*Connection_HandleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 111 of 737 January 10, 2014

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Link_Policy_Settings The link policy settings for the Connection_HandleResult

connection to write. Bits in this word are a possible ORing of

the following bit masks:

HCI_LINK_POLICY_SETTINGS_DISABLE_ALL_

LM_MODES

HCI_LINK_POLICY_SETTINGS_ENABLE_MASTER_

SLAVE_SWITCH

HCI_LINK_POLICY_SETTINGS_ENABLE_HOLD_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_SNIFF_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_PARK_MODE

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the policy

writing was done.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Default_Link_Policy_Settings

This command will read the Default Link Policy settings for all new connections.

Prototype:

int BTPSAPI HCI_Read_Default_Link_Policy_Settings(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Link_Policy_SettingsResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 112 of 737 January 10, 2014

Link_Policy_SettingsResult The current default link policy settings for all new connections.

Bits in this word are a Logical OR’ing of the following bit

values:

HCI_LINK_POLICY_SETTINGS_ENABLE_MASTER_

SLAVE_SWITCH

HCI_LINK_POLICY_SETTINGS_ENABLE_HOLD_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_SNIFF_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_PARK_MODE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Default_Link_Policy_Settings

This command will write the Default Link Policy configuration value. The

Default_Link_Policy_Settings parameter determines the initial value of the

Link_Policy_Settings for all new connections..

Prototype:

int BTPSAPI HCI_Write_Default_Link_Policy_Settings(unsigned int BluetoothStackID,

Word_t Link_Policy_Settings, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Link_Policy_Settings The updated default link policy settings for all new connections.

Bits in this word are a Logical OR’ing of the following bit

values:

HCI_LINK_POLICY_SETTINGS_ENABLE_MASTER_

SLAVE_SWITCH

HCI_LINK_POLICY_SETTINGS_ENABLE_HOLD_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_SNIFF_MODE

HCI_LINK_POLICY_SETTINGS_ENABLE_PARK_MODE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 113 of 737 January 10, 2014

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Flow_Specification

This command is used to specify the flow parameters for the traffic carried over the ACL

connection identified by the specified connection handle.

Prototype:

int BTPSAPI HCI_Flow_Specification(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t Flags, Byte_t Flow_Direction, Byte_t Service_Type,

DWord_t Token_Rate, DWord_t Token_Bucket_Size, DWord_t Peak_Bandwidth,

DWord_t Access_Latency, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags Reserved for future use and shall be set to 0 and ignored by the

receiver.

Flow_Direction Determines if the parameters refer to the outgoing or incoming

traffic of the ACL link. Possible values are:

HCI_FLOW_SPECIFICATION_FLOW_DIRECTION_O

UTGOING_FLOW

HCI_FLOW_SPECIFICATION_FLOW_DIRECTION_I

NCOMING_FLOW

Service_Type Indicates the level of service required. Possible values are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 114 of 737 January 10, 2014

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_NO_T

RAFFIC

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_BEST_E

FFORT

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_

GUARANTEED

Token_Rate The average data rate with which the application transmits data.

Token_Bucket_Size Specifies a limit on the 'burstiness' with which the application

may transmit data.

Peak_Bandwidth Limits how fast packets from applications may be sent back-to-

back.

Access_Latency The maximum acceptable delay of an L2CAP packet to the air-

interface.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etFlow_Specification_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Sniff_Subrating

This function issues the HCI_Sniff_Subrating Command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter.

Prototype:

int BTPSAPI HCI_Sniff_Subrating(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Maximum_Latency,

Word_t Minimum_Remote_Timeout, Word_t Minimum_Local_Timeout,

Byte_t *StatusResult, Word_t *Connection_HandleResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 115 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Maximum_Latency Used to calculate the maximum sniff subrate that the remote

device may use. Values are number of baseband slots (0.625

msec), with a range of 0.625 msec (0x0001) to 40.9 sec

(0xFFFE)

Minimum_Remote_Timeout Minimum base sniff subrate timeout that the remote device may

use. Values are number of baseband slots (0.625 msec), with a

range of 0.625 msec (0x0001) to 40.9 sec (0xFFFE)

Minimum_Local_Timeout Minimum base sniff subrate timeout that the local device may

use. Values are number of baseband slots (0.625 msec), with a

range of 0.625 msec (0x0001) to 40.9 sec (0xFFFE)

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Connection_HandleResult If function returns zero (success) this variable will contain the

Connection_Handle Result returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.4 Host Controller & Baseband Commands

These commands provide access and control over parts of the Bluetooth hardware. The

commands available are listed in the table below.

Command Description

HCI_Set_Event_Mask Control which events are generated by

the HCI for the Host.

HCI_Reset Reset the Bluetooth Host Controller,

Link Manager, and the radio module.

HCI_Set_Event_Filter Specify different event filters.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 116 of 737 January 10, 2014

Command Description

HCI_Flush Discard all data that is currently

pending for transmission in the Host

Controller for the specified connection

handle, even if there currently are

chunks of data that belong to more

than one L2CAP packet in the Host

Controller.

HCI_Read_PIN_Type Read whether the Host supports

variable PIN or only fixed PINs.

HCI_Write_PIN_Type Specify whether the Host supports

variable PIN or only fixed PINs.

HCI_Create_New_Unit_Key Create a new unit key.

HCI_Read_Stored_Link_Key Read one or more link keys stored in

the Bluetooth Host Controller.

HCI_Write_Stored_Link_Key Write one or more link keys to be

stored in the Bluetooth Host

Controller.

HCI_Delete_Stored_Link_Key Remove one or more of the link keys

stored in the Bluetooth Host

Controller.

HCI_Change_Local_Name Modify the user-friendly name for the

Bluetooth device.

HCI_Read_Local_Name Read the stored user-friendly name for

the Bluetooth device.

HCI_Read_Connection_Accept_Timeout Read the Connection_Accept_Timeout

configuration parameter.

HCI_Write_Connection_Accept_Timeout Write the

Connection_Accept_Timeout

configuration parameter

HCI_Read_Page_Timeout Read the Page_Reply_Timeout

configuration parameter.

HCI_Write_Page_Timeout Write the Page_Reply_Timeout

configuration parameter.

HCI_Read_Scan_Enable Read the the Scan_Enable

configuration parameter.

HCI_Write_Scan_Enable Write the Scan_Enable configuration

parameter.

HCI_Read_Page_Scan_Activity Read the Page_Scan_Interval and

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 117 of 737 January 10, 2014

Command Description

Page_Scan_Window configuration

parameters.

HCI_Write_Page_Scan_Activity Write the Page_Scan_Interval and

Page_Scan_Window configuration

parameters.

HCI_Read_Inquiry_Scan_Activity Read the Inquiry_Scan_Interval and

Inquiry_Scan_Window configuration

parameters.

HCI_Write_Inquiry_Scan_Activity Write the Inquiry_Scan_Interval and

Inquiry_Scan_Window configuration

parameters.

HCI_Read_Authentication_Enable Read the Authentication_Enable

parameter.

HCI_Write_Authentication_Enable Write the Authentication_Enable

parameter.

HCI_Read_Encryption_Mode Read the value for the

Encryption_Mode parameter.

HCI_Write_Encryption_Mode Write the value for the

Encryption_Mode parameter.

HCI_Read_Class_of_Device Read the Class_of_Device parameter.

HCI_Write_Class_of_Device Write the Class_of_Device parameter.

HCI_Read_Voice_Setting Read the Voice_Setting parameter.

HCI_Write_Voice_Setting Write the Voice_Setting parameter.

HCI_Read_Automatic_Flush_Timeout Read the Flush_Timeout parameter for

the specified connection.

HCI_Write_Automatic_Flush_Timeout Write the Flush_Timeout parameter

for the specified connection.

HCI_Read_Num_Broadcast_Retransmissions Read the Number of Broadcast

Retransmissions parameter for the

device.

HCI_Write_Num_Broadcast_Retransmissions Write the Number of Broadcast

Retransmissions parameter for the

device.

HCI_Read_Hold_Mode_Activity Read the Hold_Mode_Activity

parameter.

HCI_Write_Hold_Mode_Activity Write the Hold_Mode_Activity

parameter.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 118 of 737 January 10, 2014

Command Description

HCI_Read_Transmit_Power_Level Read the Transmit_Power_Level

parameter values for the specified

connection.

HCI_Read_SCO_Flow_Control_Enable Read the SCO_Flow_Control_Enable

setting.

HCI_Write_SCO_Flow_Control_Enable Write the SCO_Flow_Control_Enable

setting.

HCI_Set_Host_Controller_To_Host_Flow_

Control

Turn flow control on or off in the

direction from the Host Controller to

the Host.

HCI_Host_Buffer_Size Notify the Host Controller about the

Host’s buffer sizes for ACL and SCO

data. The Host Controller will segment

the data to be transmitted from the

Host Controller to the Host, so that

data contained in HCI Data Packets

will not exceed these sizes.

HCI_Host_Number_Of_Completed_Packets Notify the Host Controller when the

Host is ready to receive more HCI

packets for a connection.

HCI_Read_Link_Supervision_Timeout Read the Link_Supervision_Timeout

parameter for the device.

HCI_Write Link_Supervision_Timeout Write the Link_Supervision_Timeout

parameter for the device.

HCI_Read_Number_Of_Supported_IAC Read the value for the number of

Inquiry Access Codes (IAC) that the

local Bluetooth device can

simultaneously listen for during an

Inquiry Scan.

HCI_Read_Current_IAC_LAP Read the LAP(s) used to create the

Inquiry Access Codes (IAC) that the

local Bluetooth device is

simultaneously scanning for during

Inquiry Scans.

HCI_Write_Current_IAC_LAP Write the LAP(s) used to create the

Inquiry Access Codes (IAC) that the

local Bluetooth device is

simultaneously scanning for during

Inquiry Scans.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 119 of 737 January 10, 2014

Command Description

HCI_Read_Page_Scan_Period_Mode Read the mandatory

Page_Scan_Period_Mode of the local

Bluetooth device.

HCI_Write_Page_Scan_Period_Mode Write the mandatory

Page_Scan_Period_Mode of the local

Bluetooth device.

HCI_Read_Page_Scan_Mode Read the default Page_Scan_Mode of

the local Bluetooth device.

HCI_Write_Page_Scan_Mode Write the default Page_Scan_Mode of

the local Bluetooth device.

HCI_Set_AFH_Host_Channel_Classification Set the AFH host channel

classification.

HCI_ Read_Inquiry_Scan_Type Read the inquiry scan type of the local

device.

HCI_ Write_Inquiry_Scan_Type Write the inquiry scan type to the local

device.

HCI_ Read_Inquiry_Mode Read the inquiry mode of the local

device.

HCI_ Write_Inquiry_Mode Write the inquiry mode to the local

device.

HCI_ Read_Page_Scan_Type Read the page scan type of the local

device.

HCI_ Write_Page_Scan_Type Write the page scan type to the local

device.

HCI_Read_AFH_Channel_Assessment_Mode Read the AFH channel assessment

mode of the local device.

HCI_Write_AFH_Channel_Assessment_Mode Write the AFH channel assessment

mode to the local device.

HCI_Read_Extended_Inquiry_Response Read the extended inquiry response

for the local device

HCI_Write_Extended_Inquiry_Response Write the extended inquiry response

HCI_Refresh_Encryption_Key Refresh the encryption key

HCI_Read_Simple_Pairing_Mode Read simple pairing mode

HCI_Write_Simple_Pairing_Mode Write simple pairing mode

HCI_Read_Local_OOB_Data Read local Out of Band (OOB) data

HCI_Read_Inquiry_Response_Transmit_Power_Level Read inquiry response transmit power

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 120 of 737 January 10, 2014

Command Description

level

HCI_Write_Inquiry_Transmit_Power_Level Write inquiry transmit power level

HCI_Send_Keypress_Notification Send keypress notification

HCI_Read_Default_Erroneous_Data_Reporting Read default erroneous data reporting

HCI_Write_Default_Erroneous_Data_Reporting Write default erroneous data reporting

HCI_Enhanced_Flush Perform the enhanced flush function

HCI_Read_Logical_Link_Accept_Timeout Reads the

Logical_Link_Accept_Timeout

configuration parameter.

HCI_Write_Logical_Link_Accept_Timeout Writes the

Logical_Link_Accept_Timeout

configuration parameter.

HCI_Set_Event_Mask_Page_2 Used to control which events are

generated by the HCI for the host.

HCI_Read_Location_Data Reads stored knowledge of

environment or regulations in use.

HCI_Write_Location_Data Writes information of environment or

regulations.

HCI_Read_Flow_Control_Mode Reads value of Flow_Control_Mode

configuration parameter.

HCI_Write_Flow_Control_Mode Writes the value of

Flow_Control_Mode configuration

parameter.

HCI_Read_Enhanced_Transmit_Power_Level Reads the values of the

Enhanced_Transmit_Power_Level

configuration parameters.

HCI_Read_Best_Effort_Flush_Timeout Reads the Best Effor Flush Timeout

for a specified Logical Link.

HCI_Write_Best_Effort_Flush_Timeout Writes the Best Effor Flush Timeout

for a specified Logical Link.

HCI_Short_Range_Mode Configures Short Range Mode

parameter for specified physical link.

HCI_Read_LE_Host_Supported Reads currently configured value of

LE Host support from LMP/LE

features

HCI_Write_LE_Host_Supported Writes LE Host support to LMP/LE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 121 of 737 January 10, 2014

Command Description

features

HCI_Set_Event_Mask

This command controls which events are generated by the HCI layer.

Note:

This function uses MACRO’s to set/clear bits in an event mask structure. Constants are

provided that specify the actual bit numbers that are to be used with the MACRO (see

below).

Prototype:

int BTPSAPI HCI_Set_Event_Mask(unsigned int BluetoothStackID,

Event_Mask_t Event_Mask, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Event_Mask Eight-byte bit mask of events to allow. Setting a bit to one

enables the corresponding event. The bit mask is constructed

via the following API macros:

 SET_EVENT_MASK_BIT(Mask, BitNumber)

 RESET_EVENT_MASK_BIT(Mask, BitNumber)

 TEST_EVENT_MASK_BIT(Mask, BitNumber)

HCI_ENABLE_ALL_HCI_EVENTS_IN_EVENT_MASK(Mask)

HCI_DISABLE_ALL_HCI_EVENTS_IN_EVENT_MASK(Mask)

The bit number constants defined in the API for use with these

macros are:

Bluetooth Version 1.1

HCI_EVENT_MASK_INQUIRY_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_INQUIRY_RESULT_BIT_NUMBER

HCI_EVENT_MASK_CONNECTION_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_CONNECTION_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_DISCONNECTION_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_AUTHENTICAITION_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_REMOTE_NAME_REQUEST_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_ENCRYPTION_CHANGE_BIT_NUMBER

HCI_EVENT_MASK_CHANGE_CONNECTION_LINK_KEY_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_MASTER_LINK_KEY_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_READ_REMOTE_VERSION_INFORMATION_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_QOS_SETUP_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_COMMAND_COMPLETE_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 122 of 737 January 10, 2014

HCI_EVENT_MASK_STATUS_COMMAND_BIT_NUMBER

HCI_EVENT_MASK_HARDWARE_ERROR_BIT_NUMBER

HCI_EVENT_MASK_FLUSH_OCCURRED_BIT_NUMBER

HCI_EVENT_MASK_ROLE_CHANGE_BIT_NUMBER

HCI_EVENT_MASK_NUMBER_OF_COMPLETED_PACKETS_BIT_NUMBER

HCI_EVENT_MASK_MODE_CHANGE_BIT_NUMBER

HCI_EVENT_MASK_RETURN_LINK_KEYS_BIT_NUMBER

HCI_EVENT_MASK_PIN_CODE_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_LINK_KEY_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_LINK_KEY_NOTIFICATION_BIT_NUMBER

HCI_EVENT_MASK_LOOPBACK_COMMAND_BIT_NUMBER

HCI_EVENT_MASK_DATA_BUFFER_OVERFLOW_BIT_NUMBER

HCI_EVENT_MASK_MAX_SLOTS_CHANGE_BIT_NUMBER

HCI_EVENT_MASK_READ_CLOCK_OFFSET_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_CONNECTION_PACKET_TYPE_CHANGED_BIT_NUMBER

HCI_EVENT_MASK_QOS_VIOLATION_BIT_NUMBER

HCI_EVENT_MASK_PAGE_SCAN_MODE_CHANGE_BIT_NUMBER

HCI_EVENT_MASK_PAGE_SCAN_REPETITION_MODE_CHANGE_BIT_NUMBER

Bluetooth Version 1.2

HCI_EVENT_MASK_FLOW_SPECIFICATION_BIT_NUMBER

HCI_EVENT_MASK_INQUIRY_RESULT_WITH_RSSI_BIT_NUMBER

HCI_EVENT_MASK_READ_REMOTE_EXTENDED_FEATURES_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_SYNCHRONOUS_CONNECTION_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_SYNCHRONOUS_CONNECTION_CHANGED_BIT_NUMBER

Bluetooth Version 2.1

HCI_EVENT_MASK_SNIFF_SUBRATING_BIT_NUMBER

HCI_EVENT_MASK_EXTENDED_INQUIRY_RESULT_BIT_NUMBER

HCI_EVENT_MASK_ENCRYPTION_REFRESH_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_IO_CAPABILITY_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_IO_CAPABILITY_REQUEST_REPLY_BIT_NUMBER

HCI_EVENT_MASK_USER_CONFIRMATION_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_USER_PASSKEY_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_REMOTE_OOB_DATA_REQUEST_BIT_NUMBER

HCI_EVENT_MASK_SIMPLE_PAIRING_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_LINK_SUPERVISION_TIMEOUT_CHANGED_BIT_NUMBER

HCI_EVENT_MASK_ENHANCED_FLUSH_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_USER_PASSKEY_NOTIFICATION_BIT_NUMBER

HCI_EVENT_MASK_USER_KEYPRESS_NOTIFICATION_BIT_NUMBER

HCI_EVENT_MASK_REMOTE_HOST_SUPPORTED_FEATURES_NOTIFICATION_

BIT_NUMBER

Bluetooth Version 4.0

HCI_EVENT_MASK_LE_META_BIT_NUMBER

In addition, to aid in quickly enabling all events, the API

provides the following macro which enables all events:

HCI_ENABLE_ALL_HCI_EVENTS_IN_EVENT_MASK(Mask)

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 123 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Reset

This command resets the Bluetooth Host Controller, Link Manager, and the radio module. The

current operational state and all queued packets will be lost. After the reset is completed, the

Bluetooth device will enter standby mode, reverting to the default values for parameters which

have defaults.

Prototype:

int BTPSAPI HCI_Reset(unsigned int BluetoothStackID, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

BTPS_ERROR_VS_HCI_ERROR

Possible Events:

etDevice_Reset_Event

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 124 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_Event_Filter

This command allows the Host to specify the various conditions under which each

particular event is returned to the Host. This command may be called multiple times to set

multiple filters for the same event, and can also be used to clear all filters from an events

or from all events. Only a few of the HCI events allow filters, as specified below.

Prototype:

int BTPSAPI HCI_Set_Event_Filter(unsigned int BluetoothStackID, Byte_t Filter_Type,

Byte_t Filter_Condition_Type, Condition_t Condition, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Filter_Type The type of filter that the condition is being set for. Possible

values are:

HCI_FILTER_TYPE_CLEAR

HCI_FILTER_TYPE_INQUIRY_RESULT

HCI_FILTER_TYPE_CONNECTION_SETUP

Actually, the first value is not a true filter type, but a flag to

indicate that all event filters are to be cleared.

Filter_Condition_Type The filter condition to be set for the specified Filter_Type. This

field is ignored for the Clear type. For the Inquiry Result type

filter, the possible values are (the first type, clears the others):

HCI_FILTER_CONDITION_TYPE_RESULT_FILTER_

NEW_DEVICE

HCI_FILTER_CONDITION_TYPE_RESULT_FILTER_

CLASS_OF_DEVICE

HCI_FILTER_CONDITION_TYPE_RESULT_FILTER_

BD_ADDR

For the Connection Setup type filter, the possible values are (the

first type, clears the others):

HCI_FILTER_CONDITION_TYPE_CONNECTION_SETUP_N

EW_DEVICE

HCI_FILTER_CONDITION_TYPE_CONNECTION_SETUP_C

LASS_OF_DEVICE

HCI_FILTER_CONDITION_TYPE_CONNECTION_SETUP_B

D_ADDR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 125 of 737 January 10, 2014

Condition This is a overlayed structure which permits specifying the filter

condition for the later two Condition Types for each Filter Type.

This structure is declared as follows:

typedef struct

{

 union

 {

 Inquiry_Result_Filter_Type_Class_of_Device_Condition_t

Inquiry_Result_Filter_Type_Class_of_Device_Condition;

 Inquiry_Result_Filter_Type_BD_ADDR_Condition_t

Inquiry_Result_Filter_Type_BD_ADDR_Condition;

 Connection_Setup_Filter_Type_All_Devices_Condition_t

Connection_Setup_Filter_Type_All_Devices_Condition;

 Connection_Setup_Filter_Type_Class_of_Device_Condition_t

Connection_Setup_Filter_Type_Class_of_Device_Condition;

 Connection_Setup_Filter_Type_BD_ADDR_Condition_t

Connection_Setup_Filter_Type_BD_ADDR_Condition;

 Raw_Condition_Bytes_t

Raw_Condition_Bytes;

 } Condition;

} Condition_t;

The various structures used in the Condition_t are defined

below. For Inquiry Result Filter Type setting:

typedef struct

{

 Class_of_Device_t Class_of_Device;

 Class_of_Device_t Class_of_Device_Mask;

} Inquiry_Result_Filter_Type_Class_of_Device_Condition_t;

(see HCI_Read_Class_of_Device command for info on Class_of_Device.)

For Inquiry Result BD_ADDR setting:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} Inquiry_Result_Filter_Type_BD_ADDR_Condition_t;

For Connection Setup All Devices setting:

typedef struct

{

 Byte_t Auto_Accept_Flag;

} Connection_Setup_Filter_Type_All_Devices_Condition_t;

For Connection Setup Class of Device setting:

typedef struct

{

 Class_of_Device_t Class_of_Device;

 Class_of_Device_t Class_of_Device_Mask;

 Byte_t Auto_Accept_Flag;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 126 of 737 January 10, 2014

} Connection_Setup_Filter_Type_Class_of_Device_Condition_t;

(see HCI_Read_Class_of_Device command for info on Class_of_Device.)

For Connection Setup BD_ADDR setting:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Auto_Accept_Flag;

} Connection_Setup_Filter_Type_BD_ADDR_Condition_t;

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Flush

This command discards all data that is currently pending for transmission in the Host

Controller for the specified connection handle, even if there currently are chunks of data

that belong to more than one L2CAP packet in the Host Controller.

Prototype:

int BTPSAPI HCI_Flush(unsigned int BluetoothStackID, Word_t Connection_Handle,

Byte_t *StatusResult, Word_t *Connection_HandleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 127 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etFlush_Occurred_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_PIN_Type

This command reads whether the Link Manager thinks the Host supports variable PIN or

only fixed PINs.

Prototype:

int BTPSAPI HCI_Read_PIN_Type(unsigned int BluetoothStackID, Byte_t *StatusResult,

Byte_t *PIN_TypeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

PIN_TypeResult The type of PIN supported by the Host. Possible values are:

HCI_PIN_TYPE_VARIABLE

HCI_PIN_TYPE_FIXED

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 128 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_PIN_Type

This command tells the Link Manager what type of PINs are supported by the Host.

Prototype:

int BTPSAPI HCI_Write_PIN_Type(unsigned int BluetoothStackID, Byte_t PIN_Type,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

PIN_TypeResult The type of PIN supported by the Host. Possible values are:

HCI_PIN_TYPE_VARIABLE

HCI_PIN_TYPE_FIXED

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Create_New_Unit_Key

This command causes the Bluetooth hardware to generate a new (random) unit key. This

key only applies to new connections, not any existing ones.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 129 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Create_New_Unit_Key(unsigned int BluetoothStackID,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Stored_Link_Key

This command initiates a read of one or more Link Keys stored in the Host Controller.

The actual Link Keys will be returned in events.

Prototype:

int BTPSAPI HCI_Read_Stored_Link_Key(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Read_All_Flag, Byte_t *StatusResult,

Word_t *Max_Num_KeysResult, Word_t *Num_Keys_ReadResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device.

Read_All_Flag Flag to indicate whether only the Link Key for the specified

Bluetooth device should be returned or all Link Keys. Possible

values are:

HCI_READ_LINK_KEY_BD_ADDR

HCI_READ_LINK_KEY_ALL_STORED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 130 of 737 January 10, 2014

StatusResult Returned HCI status code.

Max_Num_KeysResult Maximum number of Link Keys that can be stored in the Host

Controller.

Num_Keys_ReadResult Number of Link Keys being read. The Link Keys will be

returned in this number of etReturn_Link_Keys_Event events.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

etReturn_Link_Keys_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Stored_Link_Key

This command writes one or more Link Keys to the Host Controller.

Prototype:

int BTPSAPI HCI_Write_Stored_Link_Key(unsigned int BluetoothStackID,

Byte_t Num_Keys_To_Write, HCI_Stored_Link_Key_Info_t HCI_Stored_Link_Key_Info[],

Byte_t *StatusResult, Byte_t *Num_Keys_Written)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Num_Keys_To_Write Number of Keys in the array to be written.

HCI_Stored_Link_Key_Info Array of structures which pair up Bluetooth devices and Link

Keys. This structure is defined as follows:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Link_Key_t Link_Key;

} HCI_Stored_Link_Key_Info_t

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 131 of 737 January 10, 2014

Num_Keys_Written Number of Link Keys actually written.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Delete_Stored_Link_Key

This command removes one or more Link Keys that are stored in the Host Controller.

Prototype:

int BTPSAPI HCI_Delete_Stored_Link_Key(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Delete_All_Flag, Byte_t *StatusResult,

Word_t *Num_Keys_DeletedResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device. This field is ignored, if the

Delete_All_Flag is set to indicate deleting all.

Delete_All_Flag A flag to indicate whether all the stored Link Keys should be

deleted or not. Possible values are:

HCI_DELETE_LINK_KEY_BD_ADDR

HCI_DELETE_LINK_KEY_ALL_STORED

StatusResult Returned HCI status code.

Num_Keys_DeletedResult Returned number of Link Keys deleted.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 132 of 737 January 10, 2014

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Change_Local_Name

This command is used to change the user-friendly name of the Bluetooth device.

Prototype:

int BTPSAPI HCI_Change_Local_Name(unsigned int BluetoothStackID, char *Name,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Name Pointer to null-terminated name (up to 249 bytes including the

NULL character)

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Local_Name

The command reads back the user-friendly name of the local Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 133 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Local_Name(unsigned int BluetoothStackID, Byte_t *StatusResult,

char *NameResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

NameResult Returned NULL-terminated character string, up to 249 bytes.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Connection_Accept_Timeout

This command reads the Connection_Accept_Timeout configuration parameter, which is

the parameter that allows the Bluetooth hardware to automatically deny a connection

request after a specified time period has occurred and the new connection is not accepted.

Prototype:

int BTPSAPI HCI_Read_Connection_Accept_Timeout(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Conn_Accept_TimeoutResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

StatusResult Returned HCI status code.

Conn_Accept_TimeoutResult Current timeout value. Values are number of baseband slots

(0.625 msec), with a range of 0.625 msec (0x0001) to 40.9

sec (0xFFFF).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 134 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Connection_Accept_Timeout

This command writes the Connection_Accept_Timeout configuration parameter, which is

the parameter that allows the Bluetooth hardware to automatically deny a connection

request after a specified time period has occurred and the new connection is not accepted.

Prototype:

int BTPSAPI HCI_Write_Connection_Accept_Timeout(unsigned int BluetoothStackID,

Word_t Conn_Accept_Timeout, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Conn_Accept_Timeout New Timeout value. Values are number of baseband slots

(0.625 msec), with a range of 0.625 msec (0x0001) to 40.9 sec

(0xFFFF).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 135 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Page_Timeout

This command reads the Page_Timeout configuration parameter, which defines the

maximum time the local Link Manager will wait for a baseband page response from the

remote device. If this time expires without a response, the connection attempt fails.

Prototype:

int BTPSAPI HCI_Read_Page_Timeout(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Page_TimeoutResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Page_TimeoutResult Current timeout value. Values are number of baseband slots

(0.625 msec), with a range of 0.625 msec (0x0001) to 40.9 sec

(0xFFFF).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Page_Timeout

This command writes the Page_Timeout configuration parameter, which defines the

maximum time the local Link Manager will wait for a baseband page response from the

remote device. If this time expires without a response, the connection attempt fails.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 136 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Write_Page_Timeout(unsigned int BluetoothStackID,

Word_t Page_Timeout, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Page_Timeout New timeout value. Values are number of baseband slots

(0.625 msec), with a range of 0.625 msec (0x0001) to 40.9 sec

(0xFFFF).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Scan_Enable

This command reads the Scan_Enable parameter, which controls whether or not the

Bluetooth device will periodically scan for page attempts and/or inquiry requests from

other Bluetooth devices.

Prototype:

int BTPSAPI HCI_Read_Scan_Enable(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Scan_EnableResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Scan_EnableResult Current setting of this parameter. Possible values are:

HCI_SCAN_ENABLE_NO_SCANS_ENABLED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 137 of 737 January 10, 2014

HCI_SCAN_ENABLE_INQUIRY_SCAN_ENABLED_

PAGE_SCAN_DISABLED

HCI_SCAN_ENABLE_INQUIRY_SCAN_DISABLED_

PAGE_SCAN_ENABLED

HCI_SCAN_ENABLE_INQUIRY_SCAN_ENABLED_

PAGE_SCAN_ENABLED

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Scan_Enable

This command writes the Scan_Enable parameter, which controls whether or not the

Bluetooth device will periodically scan for page attempts and/or inquiry requests from

other Bluetooth devices.

Prototype:

int BTPSAPI HCI_Write_Scan_Enable(unsigned int BluetoothStackID,

Byte_t Scan_Enable, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Scan_Enable Desired setting of this parameter. Possible values are:

HCI_SCAN_ENABLE_NO_SCANS_ENABLED

HCI_SCAN_ENABLE_INQUIRY_SCAN_ENABLED_

PAGE_SCAN_DISABLED

HCI_SCAN_ENABLE_INQUIRY_SCAN_DISABLED_

PAGE_SCAN_ENABLED

HCI_SCAN_ENABLE_INQUIRY_SCAN_ENABLED_

PAGE_SCAN_ENABLED

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 138 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Page_Scan_Activity

This command reads the Page_Scan_Activity configuration parameters.

Prototype:

int BTPSAPI HCI_Read_Page_Scan_Activity(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Page_Scan_IntervalResult,

Word_t *Page_Scan_WindowResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Page_Scan_IntervalResult Amount of time between consecutive page scans. Values are

number of baseband slots (0.625 msec), with a range of 11.25

msec (0x0012) to 2560 msec (0x1000).

Page_Scan_WindowResult Amount of time for the duration of the page scan. This

parameter will be less than or equal to the Page_Scan_Interval.

Values are number of baseband slots (0.625 msec), with a range

of 11.25 msec (0x0012) to 2560 msec (0x1000).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 139 of 737 January 10, 2014

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Page_Scan_Activity

This command writes the Page_Scan_Activity configuration parameters.

Prototype:

int BTPSAPI HCI_Write_Page_Scan_Activity(unsigned int BluetoothStackID,

Word_t Page_Scan_Interval, Word_t Page_Scan_Window, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Page_Scan_Interval Defines the amount of time between consecutive page scans.

Values are number of baseband slots (0.625 msec), with a range

of 11.25 msec (0x0012) to 2560 msec (0x1000). Default value

is 1.28 sec (0x0800).

Page_Scan_Window Defines the amount of time for the duration of the page scan.

This parameter must be less than or equal to the

Page_Scan_Interval. Values are number of baseband slots

(0.625 msec), with a range of 11.25 msec (0x0012) to 2560

msec (0x1000). Default value is 11.25 msec (0x0012).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 140 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Inquiry_Scan_Activity

This command reads the Inquiry_Scan_Activity configuration parameters.

Prototype:

int BTPSAPI HCI_Read_Inquiry_Scan_Activity(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Inquiry_Scan_IntervalResult,

Word_t *Inquiry_Scan_WindowResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Inquiry_Scan_IntervalResult Amount of time between consecutive inquiry scans. Values are

number of baseband slots (0.625 msec), with a range of 11.25

msec (0x0012) to 2560 msec (0x1000).

Inquiry_Scan_WindowResult Amount of time for the duration of the inquiry scan. This

parameter will be less than or equal to the

Inquiry_Scan_Interval. Values are number of baseband slots

(0.625 msec), with a range of 11.25 msec (0x0012) to 2560

msec (0x1000).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Inquiry_Scan_Activity

This command writea the Inquiry_Scan_Activity configuration parameters.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 141 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Write_Inquiry_Scan_Activity(unsigned int BluetoothStackID,

Word_t Inquiry_Scan_Interval, Word_t Inquiry_Scan_Window, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Inquiry_Scan_Interval Defines the amount of time between consecutive inquiry scans.

Values are number of baseband slots (0.625 msec), with a range

of 11.25 msec (0x0012) to 2560 msec (0x1000). Default value

is 1.28 sec (0x0800).

Inquiry_Scan_Window Defines the amount of time for the duration of the inquiry scan.

This parameter must be less than or equal to the

Inquiry_Scan_Interval. Values are number of baseband slots

(0.625 msec), with a range of 11.25 msec (0x0012) to 2560

msec (0x1000). Default value is 11.25 msec (0x0012).

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Authentication_Enable

This command reada the Authentication_Enable parameter, which controls if the local

device requires to authenticate the remote device at connection setup. At connection

setup, only the device(s) with the Authentication_Enable parameter set to enabled will try

to authenticate the other device.

Prototype:

int BTPSAPI HCI_Read_Authentication_Enable(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Authentication_EnableResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 142 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Authentication_EnableResult Current value of this parameter. Possible values are:

HCI_AUTHENTICATION_ENABLE_AUTHENTICATION_

DISABLED

HCI_AUTHENTICATION_ENABLE_AUTHENTICATION_

ENABLED_ALL_CONNECTIONS

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Authentication_Enable

This command writea the Authentication_Enable parameter, which controls if the local

device requires to authenticate the remote device at connection setup. At connection

setup, only the device(s) with the Authentication_Enable parameter set to enabled will try

to authenticate the other device. Note, changing this parameter will only affect future

connections, not any existing connections.

Prototype:

int BTPSAPI HCI_Write_Authentication_Enable(unsigned int BluetoothStackID,

Byte_t Authentication_Enable, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Authentication_Enable Desired value of this parameter. Possible values are:

HCI_AUTHENTICATION_ENABLE_AUTHENTICATION_

DISABLED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 143 of 737 January 10, 2014

HCI_AUTHENTICATION_ENABLE_AUTHENTICATION_

ENABLED_ALL_CONNECTIONS

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Encryption_Mode

This command reads the Encryption_Mode parameter, which controls if the local device

requires encryption to the remote device at connection setup. At connection setup, only

the device(s) with the Authentication_Enable parameter enabled and Encryption_Mode

parameter enabled will try to encrypt the connection to the other device.

Prototype:

int BTPSAPI HCI_Read_Encryption_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Encryption_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Encryption_ModeResult Current value of this parameter. Possible values are:

HCI_ENCRYPTION_MODE_ENCRYPTION_DISABLED

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_PACKETS

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_BROADCAST_PACKETS

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 144 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Encryption_Mode

This command writes the Encryption_Mode parameter, which controls if the local device

requires encryption to the remote device at connection setup. At connection setup, only

the device(s) with the Authentication_Enable parameter enabled and Encryption_Mode

parameter enabled will try to encrypt the connection to the other device. Note, changing

this parameter will only affect future connections, not any existing connections.

Prototype:

int BTPSAPI HCI_Write_Encryption_Mode(unsigned int BluetoothStackID,

Byte_t Encryption_Mode, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Encryption_Mode Desired value of this parameter. Possible values are:

HCI_ENCRYPTION_MODE_ENCRYPTION_DISABLED

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_PACKETS

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_BROADCAST_PACKETS

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 145 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Class_of_Device

This command reads the Class_of_Device parameter, which indicates the capabilities of

the local device to other devices.

Prototype:

int BTPSAPI HCI_Read_Class_of_Device(unsigned int BluetoothStackID,

Byte_t *StatusResult, Class_of_Device_t *Class_of_DeviceResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Class_of_DeviceResult Bit mask list of features that determine the class of device for

this Bluetooth device. The class is divided into the following

fields:

Format Type

Major Service Class

Major Device Class

Minor Device Class

The bit number constants defined for each field are listed below.

These bit numbers can be used with the following macros to set

the fields in a CoD (Class of Device bit list):

GET_CLASS_OF_DEVICE_FORMAT_TYPE(CoD)

SET_CLASS_OF_DEVICE_FORMAT_TYPE

(CoD, bitnumb)

GET_MAJOR_SERVICE_CLASS(CoD)

SET_MAJOR_SERVICE_CLASS(CoD, bitnumb)

GET_MAJOR_DEVICE_CLASS(CoD)

SET_MAJOR_DEVICE_CLASS(CoD, bitnumb)

GET_MINOR_DEVICE_CLASS(CoD)

SET_MINOR_DEVICE_CLASS(CoD, bitnumb)

Possible values for Format Type bit numbers are:

HCI_LMP_CLASS_OF_DEVICE_FORMAT_TYPE_1

Possible values for Major Service Class bit numbers are:

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

LIMITED_DISCOVER_MODE_BIT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 146 of 737 January 10, 2014

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

POSITIONING_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

NETWORKING_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

RENDERING_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

CAPTURING_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

OBJECT_TRANSFER_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

AUDIO_BIT

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

TELEPHONY_BIT0

HCI_LMP_CLASS_OF_DEVICE_SERVICE_CLASS_

INFORMATION_BIT

Possible values for Major Device Class bit numbers are:

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

MISCELLANEOUS

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

COMPUTER

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_P

HONE

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

LAN_ACCESS_POINT

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

AUDIO

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_P

ERIPHERAL

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_I

MAGING

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

WEARABLE

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

TOY

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

HEALTH

HCI_LMP_CLASS_OF_DEVICE_MAJOR_DEVICE_CLASS_

UNCLASSIFIED

The Minor Device Class bit numbers depend upon the Major

Device Class. Possible values are:

For the Computer Major Device Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_DESKTOP

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_SERVER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 147 of 737 January 10, 2014

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_LAPTOP

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_HANDHELD

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_PALM_PC

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

COMPUTER_WEARABLE

For the Phone Major Device Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_CELLULAR

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_CORDLESS

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_SMARTPHONE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_WIRED_MODEM

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_VOICE_GATEWAY

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

HONE_VOICE_ISDN_ACCESS

For the LAN Access Point Major Class, the masks are:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_LOAD_FACTOR_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_SUB_FIELD_MASK

For the LAN Access Point Major Class, the bits for the Load

Factor subfield are:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_FULLY_AVAILABLE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_1_17_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_17_33_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_33_50_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_50_67_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_67_83_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_83_99_UTILIZED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_NO_SERVICE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 148 of 737 January 10, 2014

For the LAN Access Point Major Class, the bits for the reserved

subfield are:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_L

AN_SUB_FELD_UNCLASSIFIED

For the Audio/Video Major Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_HEADSET

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_HANDS_FREE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_MICROPHONE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_LOUD_SPEAKER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_HEADPHONES

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_PORTABLE_AUDIO

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_CAR_AUDIO

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_SET_TOP_BOX

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_HIFI_AUDIO_DEVICE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_VCR

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_VIDEO_CAMERA

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_CAMCORDER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_VIDEO_MONITOR

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_VIDEO_DISPLAY_

LOUD_SPEAKER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_CONFERENCING

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

AUDIO_VIDEO_GAMING_TOY

For the Peripheral Major Class:
HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_JOYSTICK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_GAMEPAD

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_REMOTE_CONTROL

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 149 of 737 January 10, 2014

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_SENSING_DEVICE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_DIGITIZER_TABLET

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_CARD_READER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_DIGITAL_PEN

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_HANDHELD_SCANNER_RFID

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_HANDHELD_GESTURAL_

INPUT

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_KEYBOARD_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_POINTING_DEVICE_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_P

ERIPHERAL_KEYBOARD_POINTING_

DEVICE_MASK

For the Imaging Major Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_I

MAGING_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_I

MAGING_DISPLAY_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_I

MAGING_CAMERA_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_I

MAGING_SCANNER_MASK

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_I

MAGING_PRINTER_MASK

For the Wearable Major Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_WRIST_WATCH

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_PAGER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_JACKET

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_HELMET

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_

WEARABLE_GLASSES

For the Toy Major Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_UNCLASSIFIED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 150 of 737 January 10, 2014

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_ROBOT

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_VEHICLE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_DOLL_ACTION_FIGURE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_CONTROLLER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_CLASS_T

OY_GAME

For the Health Major Class:

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_UNCLASSIFIED

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_BLOOD_PRESSURE_MONITOR

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_THERMOMETER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_WEIGHING_SCALE

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_GLUCOSE_METER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_PULSE_OXIMETER

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_HEART_PULSE_RATE_MONITOR

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_HEALTH_DATA_DISPLAY

HCI_LMP_CLASS_OF_DEVICE_MINOR_DEVICE_

HEALTH_STEP_COUNTER

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 151 of 737 January 10, 2014

HCI_Write_Class_of_Device

This command writes the Class_of_Device parameter, which indicates the capabilities of

the local device to other devices.

Prototype:

int BTPSAPI HCI_Write_Class_of_Device(unsigned int BluetoothStackID,

Class_of_Device_t Class_of_Device, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Class_of_Device Bit mask list of features that determine the class of device for

this Bluetooth device. See the HCI_Read_Class_of_Device

command for a complete listing of feature bits.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Voice_Setting

This command reads the Voice_Setting parameter, which controls all the various settings

for voice connections. These settings apply to all voice connections, and cannot be set for

individual voice connections.

Prototype:

int BTPSAPI HCI_Read_Voice_Setting(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Voice_SettingResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 152 of 737 January 10, 2014

StatusResult Returned HCI status code.

Voice_SettingResult Current voice settings. To test these bits, the result must first be

masked with one of the following masks. Then the bits listed

below can be tested for on the result of each of the five

maskings.

HCI_VOICE_SETTING_INPUT_CODING_MASK

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_MASK

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_MASK

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_NUM_MASK

HCI_VOICE_SETTING_AIR_CODING_FORMAT_MASK

The Input Coding bits to test for are:

HCI_VOICE_SETTING_INPUT_CODING_LINEAR

HCI_VOICE_SETTING_INPUT_CODING_U_LAW

HCI_VOICE_SETTING_INPUT_CODING_A_LAW

The Input Data Format bits to test for are:

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

1_COMPLEMENT

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

2_COMPLEMENT
HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

SIGN_MAGNITUDE

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

UNSIGNED

The Input Sample Size bits to test for are:

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_8_BIT

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_16_BIT

The Linear PCM Bit Position Shift Value bits to test for are:

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_

NUM_SHIFT_VALUE

The Air Coding Format bits to test for are:

Bluetooth Version 1.1

HCI_VOICE_SETTING_AIR_CODING_FORMAT_CVSD

HCI_VOICE_SETTING_AIR_CODING_FORMAT_U_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_A_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_NONE

Bluetooth Version 1.2

HCI_VOICE_SETTING_AIR_CODING_FORMAT_

TRANSPARENT_DATA

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 153 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Voice_Setting

This command writes the Voice_Setting parameter, which controls all the various settings

for voice connections. These settings apply to all voice connections, and cannot be set for

individual voice connections.

Prototype:

int BTPSAPI HCI_Write_Voice_Setting(unsigned int BluetoothStackID,

Word_t Voice_Setting, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Voice_Setting Desired voice settings. This is an ORing of bits in five

categories as defined by the following masks:

HCI_VOICE_SETTING_INPUT_CODING_MASK

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_MASK

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_MASK

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_NUM_MASK

HCI_VOICE_SETTING_AIR_CODING_FORMAT_MASK

The Input Coding bits which may be set are:

HCI_VOICE_SETTING_INPUT_CODING_LINEAR

HCI_VOICE_SETTING_INPUT_CODING_U_LAW

HCI_VOICE_SETTING_INPUT_CODING_A_LAW

The Input Data Format bits which may set are:

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

1_COMPLEMENT

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

2_COMPLEMENT
HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

SIGN_MAGNITUDE

HCI_VOICE_SETTING_INPUT_DATA_FORMAT_

UNSIGNED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 154 of 737 January 10, 2014

The Input Sample Size which may set are:

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_8_BIT

HCI_VOICE_SETTING_INPUT_SAMPLE_SIZE_16_BIT

The Linear PCM Bit Position Shift Value bits which may be set

are:

HCI_VOICE_SETTING_LINEAR_PCM_BIT_POS_

NUM_SHIFT_VALUE

The Air Coding Format bits which may be set are:

Bluetooth Version 1.1

HCI_VOICE_SETTING_AIR_CODING_FORMAT_CVSD

HCI_VOICE_SETTING_AIR_CODING_FORMAT_U_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_A_LAW

HCI_VOICE_SETTING_AIR_CODING_FORMAT_NONE

Bluetooth Version 1.2
HCI_VOICE_SETTING_AIR_CODING_FORMAT_

TRANSPARENT_DATA

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Automatic_Flush_Timeout

This command reads the Flush_Timeout parameter for the specified connection (ACL link

only), which defines the amount of time before all chunks of the L2CAP packet, of which

a baseband packet is currently being transmitted, are automatically flushed by the Host

Controller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 155 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Automatic_Flush_Timeout(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Word_t *Flush_TimeoutResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Flush_TimeoutResult Current timeout value. A zero indicates that there is no timeout

defined (or infinite timeout). Values are number of baseband

slots (0.625 msec), with a range of 0.625 msec (0x0001) to

almost 1.28 sec (0x07FF).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Automatic_Flush_Timeout

This command writes the Flush_Timeout parameter for the specified connection (ACL

link only), which defines the amount of time before all chunks of the L2CAP packet, of

which a baseband packet is currently being transmitted, are automatically flushed by the

Host Controller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 156 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Write_Automatic_Flush_Timeout(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Flush_Timeout, Byte_t *StatusResult,

Word_t *Connection_HandleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flush_Timeout Current timeout value. A zero indicates that there is no timeout

defined (or infinite timeout). Values are number of baseband

slots (0.625 msec), with a range of 0.625 msec (0x0001) to

almost 1.28 sec (0x07FF).

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Num_Broadcast_Retransmissions

This command reads the device’s Number of Broadcast Retransmissions parameter, which

defines the number of times the device will retransmit a broadcast data packet to increase

reliability.

Prototype:

int BTPSAPI HCI_Read_Num_Broadcast_Retransmissions(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Num_Broadcast_RetranResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 157 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

StatusResult Returned HCI status code.

Num_Broadcast_RetranResult Current parameter value in the range of 0x00 to 0xFF.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Num_Broadcast_Retransmissions

This command reads the device’s Number of Broadcast Retransmissions parameter, which

defines the number of times the device will retransmit a broadcast data packet to increase

reliability. This parameter should be adjusted as the link quality measurement changes.

Prototype:

int BTPSAPI HCI_Write_Num_Broadcast_Retransmissions(

unsigned int BluetoothStackID,

Byte_t Num_Broadcast_Retran, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Num_Broadcast_Retran Desired parameter value in the range of 0x00 to 0xFF.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 158 of 737 January 10, 2014

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Hold_Mode_Activity

This command reads the Hold_Mode_Activity parameter, which determines what

activities should be suspended when the device is in hold mode.

Prototype:

int BTPSAPI HCI_Read_Hold_Mode_Activity(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Hold_Mode_ActivityResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Hold_Mode_ActivityResult Current parameter value. This is a bitwise ORing of the

following defined bits:

HCI_HOLD_MODE_ACTIVITY_MAINTAIN_CURRENT_

POWER_STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_PAGE_STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_INQUIRY_

STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_PERIODIC_

INQUIRIES

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 159 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Hold_Mode_Activity

This command writes the Hold_Mode_Activity parameter, which determines what

activities should be suspended when the device is in hold mode.

Prototype:

int BTPSAPI HCI_Write_Hold_Mode_Activity(unsigned int BluetoothStackID,

Byte_t Hold_Mode_Activity, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Hold_Mode_Activity Current parameter value. This is a bitwise ORing of the

following defined bits:

HCI_HOLD_MODE_ACTIVITY_MAINTAIN_CURRENT_

POWER_STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_PAGE_STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_INQUIRY_

STATE

HCI_HOLD_MODE_ACTIVITY_SUSPEND_PERIODIC_

INQUIRIES

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 160 of 737 January 10, 2014

HCI_Read_Transmit_Power_Level

This command reads the Transmit_Power_Level parameters for the specified (ACL Link)

Connection.

Prototype:

int BTPSAPI HCI_Read_Transmit_Power_Level(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t Type, Byte_t *StatusResult,

Word_t *Connection_HandleResult, Byte_t *Transmit_Power_LevelResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Type Flag to indicate whether to read the current or maximum power

level. The possible values are:

HCI_TRANSMIT_POWER_LEVEL_TYPE_CURRENT

HCI_TRANSMIT_POWER_LEVEL_TYPE_MAXIMUM

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Transmit_Power_LevelResult The current/maximum power level in the range of -30 dBm to

+20 dBm.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 161 of 737 January 10, 2014

HCI_Read_SCO_Flow_Control_Enable

This command reads the SCO_Flow_Control_Enable parameter, which enables and dis-

ables SCO flow control.

Prototype:

int BTPSAPI HCI_Read_SCO_Flow_Control_Enable(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *SCO_Flow_Control_EnableResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult Returned HCI status code.

SCO_Flow_Control_EnableResult Current parameter setting. Possible values are:

HCI_SCO_FLOW_CONTROL_DISABLE

HCI_SCO_FLOW_CONTROL_ENABLE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_SCO_Flow_Control_Enable

This command writes the SCO_Flow_Control_Enable parameter, which enables and dis-

ables SCO flow control. Note, changing this parameter will only affect future

connections, not any existing connections.

Prototype:

int BTPSAPI HCI_Write_SCO_Flow_Control_Enable(unsigned int BluetoothStackID,

Byte_t SCO_Flow_Control_Enable, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 162 of 737 January 10, 2014

SCO_Flow_Control_Enable Current parameter setting. Possible values are:

HCI_SCO_FLOW_CONTROL_DISABLE

HCI_SCO_FLOW_CONTROL_ENABLE

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_Host_Controller_To_Host_Flow_Control

This command allows the Host to turn flow control on or off in the direction from the Host

Controller to the Host. If flow control is turned off, the Host should not send the

Host_Number_Of_Completed_Packets command. That command will be ignored by the

Host Controller if it is sent by the Host and flow control is off.

Prototype:

int BTPSAPI HCI_Set_Host_Controller_To_Host_Flow_Control(

unsigned int BluetoothStackID, Byte_t Flow_Control_Enable, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Flow_Control_Enable Desired setting of this parameter. Possible values are:

HCI_HOST_FLOW_CONTROL_ENABLE_OFF

HCI_HOST_FLOW_CONTROL_ENABLE_ON

HCI_HOST_FLOW_CONTROL_ENABLE_ACL_ON_SCO_OFF

HCI_HOST_FLOW_CONTROL_ENABLE_ACL_OFF_SCO_ON

HCI_HOST_FLOW_CONTROL_ENABLE_ACL_ON_SCO_ON

StatusResult Returned HCI status code.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 163 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Host_Buffer_Size

This command allows the Host to notify the Host Controller of the maximum size of the

data portion of HCI ACL and SCO Data Packets sent from the Host Controller to the Host

and the total number of HCI ACL and SCO Data Packets that can be stored in the data

buffers of the Host. The Host Controller will break up data into packets no bigger than the

limits specified. The number of data packets parameters are only relevant when flow

control is turned on (command above).

Prototype:

int BTPSAPI HCI_Host_Buffer_Size(unsigned int BluetoothStackID,

Word_t Host_ACL_Data_Packet_Length, Byte_t Host_SCO_Data_Packet_Length,

Word_t Host_Total_Num_ACL_Data_Packets,

Word_t Host_Total_Num_SCO_Data_Packets, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

Host_ACL_Data_Packet_Length Maximum length of ACL data packets, up to 0xFFFF

Host_SCO_Data_Packet_Length Maximum length of SCO data packets, up to 0xFF

Host_Total_Num_ACL_Data_Packets Maximum number of ACL packets that can be held in

the host, up to 0xFFFF.

Host_Total_Num_SCO_Data_Packets Maximum number of SCO packets that can be held in

the host, up to 0xFFFF.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 164 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Host_Number_Of_Completed_Packets

This command is used by the Host to indicate to the Host Controller the number of HCI

Data Packets that have been completed (processed) for each connection since the last time

this command was sent. This tells the Host Controller that the corresponding buffer space

has been freed in the Host. This command should only be used when flow control is on

(command above).

Prototype:

int BTPSAPI HCI_Host_Number_Of_Completed_Packets(unsigned int BluetoothStackID,

Byte_t Number_Of_Handles,

HCI_Host_Completed_Packets_Info_t HCI_Host_Completed_Packets_Info[],

Byte_t WaitForResponse, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

Number_Of_Handles Number of packets in the provided array. Must not

be zero.

HCI_Host_Completed_Packets_Info Array of structures which pair up a connection

handle and the number of packets which have been

completed for that handle. The definition of the

structures in this array is:

typedef struct

{

 Word_t Connection_Handle;

 Word_t Host_Num_Of_Completed_Packets;

} HCI_Host_Completed_Packets_Info_t;

WaitForResponse Boolean flag indicating whether this function call

should wait until it gets a response from the Host

Controller. Note, there is no response unless there is

invalid data. Therefore, when the data is good this

function will stall until the timeout is reached. If the

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 165 of 737 January 10, 2014

Host knows it is passing good data, it should

probably set this flag to FALSE.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Link_Supervision_Timeout

This command reads the Link_Supervision_Timeout parameter, which is used by the

master or slave Bluetooth device to monitor link loss. If, for any reason, no Baseband

packets are received for a duration longer than the Link_Supervision_Timeout, the

connection is disconnected. The same timeout value applies to both the SCO and ACL

connections for the device specified by the ACL Connection Handle passed in this

command.

Prototype:

int BTPSAPI HCI_Read_Link_Supervision_Timeout(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Word_t *Link_Supervision_TimeoutResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the

Connection Complete event associated with the

HCI_Create_Connection command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which

the operation was done.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 166 of 737 January 10, 2014

Link_Supervision_TimeoutResult Current timeout value. Values are number of baseband

slots (0.625 msec), with a range of 0.625 msec (0x0001)

to 40.9 sec (0xFFFF).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Link_Supervision_Timeout

This command writes the Link_Supervision_Timeout parameter, which is used by the

master or slave Bluetooth device to monitor link loss. If, for any reason, no Baseband

packets are received for a duration longer than the Link_Supervision_Timeout, the

connection is disconnected. The same timeout value applies to both the SCO and ACL

connections for the device specified by the ACL Connection Handle passed in this

command.

Setting the Link_Supervision_Timeout parameter to No Link_ Supervision_Timeout

(0x0000) will disable the check for the specified connection. This makes it unnecessary

for the master of the piconet to unpark and then park each Bluetooth device every ~40

seconds. By using this setting, the scalability of the Park mode is not limited.

Prototype:

int BTPSAPI HCI_Write_Link_Supervision_Timeout(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Link_Supervision_Timeout, Byte_t *StatusResult,

Word_t *Connection_HandleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 167 of 737 January 10, 2014

Link_Supervision_Timeout Current timeout value. A value of zero disables this timeout.

Values are number of baseband slots (0.625 msec), with a range

of 0.625 msec (0x0001) to 40.9 sec (0xFFFF).

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Number_Of_Supported_IAC

This command reads the number of Inquiry Access Codes (IAC) that the local Bluetooth

device can simultaneous listen for during an Inquiry Scan.

Prototype:

int BTPSAPI HCI_Read_Number_Of_Supported_IAC(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Num_Support_IACResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Num_Support_IACResult Current setting in the range of 0x01 to 0x40.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 168 of 737 January 10, 2014

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Current_IAC_LAP

This command reads the LAP(s) (lower address part of Bluetooth device address) used to

create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously

scanning for during Inquiry Scans.

Prototype:

int BTPSAPI HCI_Read_Current_IAC_LAP(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Num_Current_IACResult, IAC_LAP_t *IAC_LAPResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Num_Current_IACResult Number of IACs currently in use by the local Bluetooth device.

IAC_LAPResult Array of LAPs (3-Byte structures) for in-use IACs. MACRO’s

exist for the two most commonly used IAC LAP’s:

HCI_ASSIGN_GIAC_LAP(lapvar)

HCI_ASSIGN_LIAC_LAP(lapvar)

Both MACRO’s accept a variable of type LAP_t.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 169 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Current_IAC_LAP

This command writes the LAP(s) (lower address part of Bluetooth device address) used to

create the Inquiry Access Codes (IAC) that the local Bluetooth device is simultaneously

scanning for during Inquiry Scans. This command writes over the current IACs used by

the local Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Current_IAC_LAP(unsigned int BluetoothStackID,

Byte_t Num_Current_IAC, IAC_LAP_t IAC_LAP[], Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Num_Current_IAC Number of IAC LAPs provided in this command.

IAC_LAPResult Array of LAPs (3-Byte structures) for in-use IACs. MACRO’s

exist for the two most commonly used IAC LAP’s:

HCI_ASSIGN_GIAC_LAP(lapvar)

HCI_ASSIGN_LIAC_LAP(lapvar)

Both MACRO’s accept a variable of type LAP_t.

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 170 of 737 January 10, 2014

HCI_Read_Page_Scan_Period_Mode

This command reads the mandatory Page_Scan_Period_Mode of the local Bluetooth

device. Every time an inquiry response message is sent, the Bluetooth device will start a

timer, the value of which is dependent on the Page_Scan_Period_Mode. As long as this

timer has not expired, the Bluetooth device will use the Page_Scan_Period_Mode

parameter for all future page scans.

Prototype:

int BTPSAPI HCI_Read_Page_Scan_Period_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Page_Scan_Period_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

StatusResult Returned HCI status code.

Page_Scan_Period_ModeResult Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Page_Scan_Period_Mode

This command writes the mandatory Page_Scan_Period_Mode of the local Bluetooth

device. Every time an inquiry response message is sent, the Bluetooth device will start a

timer, the value of which is dependent on the Page_Scan_Period_Mode. As long as this

timer has not expired, the Bluetooth device will use the Page_Scan_Period_Mode

parameter for all future page scans.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 171 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Write_Page_Scan_Period_Mode(unsigned int BluetoothStackID,

Byte_t Page_Scan_Period_Mode, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Page_Scan_Period_Mode Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Page_Scan_Mode

This command reads the default page scan mode of the local Bluetooth device, which is a

parameter that indicates the page scan mode that is used for default page scan.

Prototype:

int BTPSAPI HCI_Read_Page_Scan_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Page_Scan_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Page_Scan_ModeResult Current parameter setting. Possible values are:

Bluetooth Version 1.1

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 172 of 737 January 10, 2014

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Page_Scan_Mode

This command writes the default page scan mode of the local Bluetooth device, which is a

parameter that indicates the page scan mode that is used for default page scan.

Prototype:

int BTPSAPI HCI_Write_Page_Scan_Mode(unsigned int BluetoothStackID,

Byte_t Page_Scan_Mode, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Page_Scan_Mode Current parameter setting. Possible values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 173 of 737 January 10, 2014

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_AFH_Host_Channel_Classification

This command command allows the Bluetooth host to specify a channel classification

based on its “local information”.

Prototype:

int BTPSAPI HCI_Set_AFH_Host_Channel_Classification(

unsigned int BluetoothStackID,

AFH_Channel_Map_t AFH_Host_Channel_Classification,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

AFH_Host_Channel_Classification Host channel classification. This is simply a bitmask of

the available channels (numbered 0 through 79).

Useful macros defined for manipulation of AFH

Channel Maps are:

COMPARE_AFH_CHANNEL_MAP(map1, map2)

ASSIGN_AFH_CHANNEL_MAP(map, MSByte, …, LSByte)

SET_AFH_CHANNEL_MAP_CHANNEL(map, channum)

RESET_AFH_CHANNEL_MAP_CHANNEL(map, channum)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 174 of 737 January 10, 2014

TEST_AFH_CHANNEL_MAP_CHANNEL(map, channum)

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Inquiry_Scan_Type

This command is used to read the Inquiry_Scan_Type configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Inquiry_Scan_Type(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Inquiry_Scan_TypeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Inquiry_Scan_TypeResult Returned inquiry scan type of the local device. Possible values

are:

HCI_INQUIRY_SCAN_TYPE_MANDATORY_STANDARD_

SCAN

HCI_INQUIRY_SCAN_TYPE_OPTIONAL_INTERLACED_S

CAN

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 175 of 737 January 10, 2014

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Inquiry_Scan_Type

This command is used to write the Inquiry Scan Type configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Inquiry_Scan_Type(unsigned int BluetoothStackID,

Byte_t Scan_Type, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Scan_Type Indicates standard scan or interlaced scan. Possible values are:

HCI_INQUIRY_SCAN_TYPE_MANDATORY_STANDARD_

SCAN

HCI_INQUIRY_SCAN_TYPE_OPTIONAL_INTERLACED_S

CAN

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 176 of 737 January 10, 2014

HCI_Read_Inquiry_Mode

This command is used to read the Inquiry_Mode configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Inquiry_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Inquiry_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Inquiry_ModeResult Returned inquiry mode setting. Possible values are:

HCI_INQUIRY_MODE_STANDARD_INQUIRY_RESULT

HCI_INQUIRY_MODE_INQUIRY_RESULT_FORMAT_

WITH_RSSI

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Inquiry_Mode

This command is used to write the Inquiry_Mode configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Inquiry_Mode(unsigned int BluetoothStackID,

Byte_t Inquiry_Mode, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 177 of 737 January 10, 2014

Inquiry_Mode Indicates standard inquiry result mode or inquiry result with

RSSI mode. Possible values are:

HCI_INQUIRY_MODE_STANDARD_INQUIRY_RESULT

HCI_INQUIRY_MODE_INQUIRY_RESULT_FORMAT_

WITH_RSSI

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Page_Scan_Type

This command is used to read the Page Scan Type configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Page_Scan_Type(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Page_Scan_TypeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Page_Scan_TypeResult Returned page scan type setting. Possible values are:

HCI_PAGE_SCAN_TYPE_MANDATORY_STANDARD_S

CAN

HCI_PAGE_SCAN_TYPE_OPTIONAL_INTERLACED_SCAN

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 178 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Page_Scan_Type

This command is used to write the Page Scan Type configuration parameter of the local

Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Page_Scan_Type(unsigned int BluetoothStackID,

Byte_t Page_Scan_Type, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Page_Scan_Type Indicates standard scan or interlaced scan. Possible values are:

HCI_PAGE_SCAN_TYPE_MANDATORY_STANDARD_S

CAN

HCI_PAGE_SCAN_TYPE_OPTIONAL_INTERLACED_SCAN

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 179 of 737 January 10, 2014

HCI_Read_AFH_Channel_Assessment_Mode

This command is used to read the AFH_Channel_Assessment_Mode configuration

parameter of the local Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_AFH_Channel_Assessment_Mode(

unsigned int BluetoothStackID,

Byte_t *StatusResult,

Byte_t *AFH_Channel_Assessment_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth

Protocol Stack via a call to BSC_Initialize

StatusResult Returned HCI status code.

AFH_Channel_Assessment_ModeResult Returned AFH channel assessment mode setting.

Possible values are:

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_

ASSESSMENT_DISABLED

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_

ASSESSMENT_ENABLED

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_AFH_Channel_Assessment_Mode

This command is used to write the AFH_Channel_Assessment_Mode configuration

parameter of the local Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_AFH_Channel_Assessment_Mode(

unsigned int BluetoothStackID,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 180 of 737 January 10, 2014

Byte_t AFH_Channel_Assessment_Mode,

Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

AFH_Channel_Assessment_Mode Indicates whether the controller channel assessment is

enabled or disabled. Possible values are:

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_

ASSESSMENT_DISABLED

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_

ASSESSMENT_ENABLED

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Extended_Inquiry_Response

This function issues the HCI_Read_Extended_Inquiry_Response Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Read_Extended_Inquiry_Response(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *FEC_RequiredResult, Extended_Inquiry_Response_Data_t

*Extended_Inquiry_Response_DataResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth

Protocol Stack via a call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 181 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable

will contain the Status Result returned from the

Bluetooth device

FEC_RequiredResult If function returns zero (success) this variable

will contain the FEC Required parameter

returned from the Bluetooth device

Extended_Inquiry_Response_DataResult If function returns zero (success) this variable

variable will the contain the Extended Inquiry

Response Result returned from the Bluetooth

device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Extended_Inquiry_Response

This function issues the HCI_Write_Extended_Inquiry_Response Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Write_Extended_Inquiry_Response(unsigned int BluetoothStackID,

Byte_t FEC_Required, Extended_Inquiry_Response_Data_t

*Extended_Inquiry_Response_Data, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

FEC_Required Specifies whether FEC is required

Extended_Inquiry_Response_Data Pointer to the actual formatted Extended Inquiry

 Response Data (must be 240 bytes in length).

Return:

Zero if successful.

Non zero if failure

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 182 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Refresh_Encryption_Key

This function issues the HCI_Refresh_Encryption_Key Command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter.

Prototype:

int BTPSAPI HCI_Refresh_Encryption_Key(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Simple_Pairing_Mode

This function issues the HCI_Read_Simple_Pairing_Mode Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Read_Simple_Pairing_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Simple_Pairing_ModeResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 183 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Simple_Pairing_ModeResult If function returns zero (success) this variable will contain the

Simple Pairing Mode returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Simple_Pairing_Mode

This function issues the HCI_Write_Simple_Pairing_Mode Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Write_Simple_Pairing_Mode(unsigned int BluetoothStackID,

Byte_t Simple_Pairing_Mode, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Simple_Pairing_Mode Flags whether not simple pairing mode is enabled. Possible

values:

HCI_SIMPLE_PAIRING_MODE_NOT_ENABLED

HCI_SIMPLE_PAIRING_MODE_ENABLED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 184 of 737 January 10, 2014

HCI_Read_Local_OOB_Data

This function issues the HCI_Read_Local_OOB_Data Command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter.

Prototype:

int BTPSAPI HCI_Read_Local_OOB_Data(unsigned int BluetoothStackID,

Byte_t *StatusResult, Simple_Pairing_Hash_t *Simple_Pairing_HashResult,

Simple_Pairing_Randomizer_t *Simple_Pairing_RandomizerResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the Bluetooth

device

Simple_Pairing_HashResult If function returns zero (success) this variable will

contain the Simple_Pairing_HashResult returned from

the Bluetooth device

Simple_Pairing_RandomizerResult If function returns zero (success) this variable will

contain the Simple_Pairing_RandomizerResult returned

from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Inquiry_Response_Transmit_Power_Level

This function issues the HCI_Read_Inquiry_Response_Transmit_Power_Level Command

to the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by

the BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Read_Inquiry_Response_Transmit_Power_Level(

unsigned int BluetoothStackID, Byte_t *StatusResult, SByte_t *TX_PowerResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 185 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

TX_PowerResult If function returns zero (success) this variable will contain the

TX_PowerResult returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Inquiry_Transmit_Power_Level

This function issues the HCI_Write_Inquiry_Transmit_Power_Level Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Write_Inquiry_Transmit_Power_Level(

unsigned int BluetoothStackID, SByte_t TX_Power, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TX_Power Transmit power level. This is a signed value that specifies

dBm. Range must be between -70 dB and 20 dBm.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 186 of 737 January 10, 2014

HCI_Send_Keypress_Notification

This function issues the HCI_Send_Keypress_Notification Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Send_Keypress_Notification(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t KeyPress, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of the remote Bluetooth device to

receive the Keypress notification.

KeyPress Keypress Notification value. Possible values:

HCI_KEYPRESS_NOTIFICATION_TYPE_PASSKEY_

ENTRY_STARTED

HCI_KEYPRESS_NOTIFICATION_TYPE_PASSKEY_

DIGIT_ENTERED

HCI_KEYPRESS_NOTIFICATION_TYPE_PASSKEY_

DIGIT_ERASED

HCI_KEYPRESS_NOTIFICATION_TYPE_PASSKEY_

CLEARED

HCI_KEYPRESS_NOTIFICATION_TYPE_PASSKEY_

ENTRY_COMPLETED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

BD_ADDRResult If function returns zero (success) this variable will contain the

BD_ADDRResult returned from the Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 187 of 737 January 10, 2014

HCI_Read_Default_Erroneous_Data_Reporting

This function issues the HCI_Read_Default_Erroneous_Data_Reporting Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Read_Default_Erroneous_Data_Reporting(

unsigned int BluetoothStackID, Byte_t *StatusResult,

Byte_t *Erroneous_Data_ReportingResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the Bluetooth

device

Erroneous_Data_ReportingResult If function returns zero (success) this variable will

contain the Connection_Handle Result returned from the

Bluetooth device.

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Default_Erroneous_Data_Reporting

This function issues the HCI_Write_Default_Erroneous_Data_Reporting Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter.

Prototype:

int BTPSAPI HCI_Write_Default_Erroneous_Data_Reporting(

unsigned int BluetoothStackID, Byte_t Erroneous_Data_Reporting,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Erroneous_Data_Reporting Specifies whether Erroneous Data Repoirting is enabled.

Possible values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 188 of 737 January 10, 2014

HCI_ERRONEOUS_DATA_REPORTING_NOT_ENABLED

HCI_ERRONEOUS_DATA_REPORTING_ENABLED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Enhanced_Flush

This function issues the HCI_Enhanced_Flush Command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter.

Prototype:

int BTPSAPI HCI_Enhanced_Flush(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t Packet_Type, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

Non zero if failure

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 189 of 737 January 10, 2014

HCI_Read_Logical_Link_Accept_Timeout

Issues the HCI_Read_Logical_Link_Accept_Timeout command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). The purpose of sending this command is to read the

Logical_Link_Accept_Timeout configuration parameter. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for

a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Logical_Link_Accept_Timeout (unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *Logical_Link_Accept_TimeoutResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the Bluetooth

device

Logical_Link_Accept_TimeoutResult If function returns zero (success) the variable pointed

to by this parameter will contain the Logical Link

Accept Timeout returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Logical_Link_Accept_Timeout

Issues the HCI_Write_Logical_Link_Accept_Timeout command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). The purpose of sending this command is to write the

Logical_Link_Accept_Timeout configuration parameter. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for

a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Logical_Link_Accept_Timeout (unsigned int BluetoothStackID,

Word_t Logical_Link_Accept_Timeout, Byte_t *StatusResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 190 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Logical_Link_Accept_Timeout Contains the Logical Link Accept Timeout that will be

written to the Logical Link Accept Timeout configuration

parameter.

StatusResult If function returns zero (success) this variable will contain

the Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_Event_Mask_Page_2

Issues the HCI_Set_Event_Mask_Page_2 command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). The purpose of this command is to control which events are

generated by the HCI for the host. Note, this function blocks until either a result is

returned from the Bluetooth device OR the function times out waiting for a response from

the Bluetooth device.

Note:

This function uses MACRO’s to set/clear bits in an event mask structure. Constants are

provided that specify the actual bit numbers that are to be used with the MACRO (see

below).

Prototype:

int BTPSAPI HCI_Set_Event_Mask_Page_2 (unsigned int BluetoothStackID,

Event_Mask_t Event_Mask, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Event_Mask Eight-byte bit mask of events to allow. Setting a bit to one

enables the corresponding event. The bit mask is constructed

via the following API macros:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 191 of 737 January 10, 2014

 SET_EVENT_MASK_BIT(Mask, BitNumber)

 RESET_EVENT_MASK_BIT(Mask, BitNumber)

 TEST_EVENT_MASK_BIT(Mask, BitNumber)

HCI_ENABLE_ALL_HCI_EVENTS_IN_EVENT_

MASK_PAGE_2(Mask)

HCI_DISABLE_ALL_HCI_EVENTS_IN_EVENT_

MASK_PAGE_2(Mask)

The bit number constants defined in the API for use with these

macros are:

HCI_EVENT_MASK_PHYSICAL_LINK_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_CHANNEL_SELECTED_BIT_NUMBER

HCI_EVENT_MASK_DISCONNECTION_PHYSICAL_LINK_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_PHYSICAL_LINK_LOSS_EARLY_WARNING_BIT_NUMBER

HCI_EVENT_MASK_PHYSICAL_LINK_RECOVERY_BIT_NUMBER

HCI_EVENT_MASK_LOGICAL_LINK_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_DISCONNECTION_LOGICAL_LINK_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_FLOW_SPEC_MODIFY_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_NUMBER_OF_COMPLETED_DATA_BLOCKS_BIT_NUMBER

HCI_EVENT_MASK_AMP_START_TEST_BIT_NUMBER

HCI_EVENT_MASK_AMP_TEST_END_BIT_NUMBER

HCI_EVENT_MASK_AMP_RECEIVER_REPORT_BIT_NUMBER

HCI_EVENT_MASK_SHORT_RANGE_MODE_CHANGE_COMPLETE_BIT_NUMBER

HCI_EVENT_MASK_AMP_STATUS_CHANGE_BIT_NUMBER

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 192 of 737 January 10, 2014

HCI_Read_Location_Data

Issues the HCI_Read_Location_Data command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). This command provides the ability to read any stored knowledge of

environment or regulations that are currently in use. Note, this function blocks until either

a result is returned from the Bluetooth device OR the function times out waiting for a

response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Location_Data(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Location_Domain_AwareResult,

Word_t *Location_DomainResult, Byte_t *Location_Domain_OptionsResult,

Byte_t *Location_OptionsResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the Bluetooth

device

Location_Domain_AwareResult If function returns zero (success) the variable pointed to

by this parameter will contain the Location Domain

Aware Result returned from the device. This value is

one of the following:

HCI_LOCATION_DOMAIN_REGULATORY_

DOMAIN_UNKNOWN

HCI_LOCATION_DOMAIN_REGULATORY_

DOMAIN_KNOWN

Location_DomainResult If function returns zero (success) the variable pointed to

by this parameter will contain the Location Domain

Result returned from the device.

Location_Domain_OptionsResult If function returns zero (success) the variable pointed to

by this parameter will contain the Location Domain

Options result returned from the device.

Location_OptionsResult If function returns zero (success) the variable pointed to

by this parameter will contain the Location Options

Result returned from the device. This value is one of the

following:

HCI_LOCATION_DOMAIN_OPTIONS_NOT_

MAINS_POWERED

HCI_LOCATION_DOMAIN_OPTIONS_MAINS_

POWERED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 193 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Location_Data

Issues the HCI_Write_Location_Data command to the Bluetooth device that is associated

with the Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID

parameter). This command provides the ability to write information about the environment

or regulations in use. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Write_Location_Data(unsigned int BluetoothStackID,

Byte_t Location_Domain_Aware, Word_t Location_Domain,

Byte_t Location_Domain_Options, Byte_t Location_Options, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Location_Domain_Aware Location Domain Aware result to write. This value is one of the

following:

HCI_LOCATION_DOMAIN_REGULATORY_

DOMAIN_UNKNOWN

HCI_LOCATION_DOMAIN_REGULATORY_

DOMAIN_KNOWN

Location_Domain Location Domain result to write.

Location_Domain_Options Location Domain Options to write.

Location_Options Location Options to write. This value is one of the following:

HCI_LOCATION_DOMAIN_OPTIONS_NOT_

MAINS_POWERED

HCI_LOCATION_DOMAIN_OPTIONS_MAINS_

POWERED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 194 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Flow_Control_Mode

Issues the HCI_Read_Flow_Control_Mode command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command reads the Flow_Control_Mode

configuration parameter. Note, this function blocks until either a result is returned from

the Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Read_Flow_Control_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Flow_Control_ModeResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Flow_Control_ModeResult If function returns zero (success) the variable pointed to by this

parameter will contain the Flow Control Mode Result returned

from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 195 of 737 January 10, 2014

HCI_Write_Flow_Control_Mode

Issues the HCI_Write_Flow_Control_Mode command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command writes the Flow_Control_Mode

configuration parameter. Note, this function blocks until either a result is returned from

the Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Write_Flow_Control_Mode(unsigned int BluetoothStackID,

Byte_t Flow_Control_Mode, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Flow_Control_Mode Flow Control Mode to write to Flow_Control_Mode

configuration parameter.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Enhanced_Transmit_Power_Level

Issues the HCI_Read_Enhanced_Transmit_Power_Level command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack (which itself is specified with

the BluetoothStackID parameter). Reads the values for the

Enhanced_Transmit_Power_Level configuration parameters. Note, this function blocks

until either a result is returned from the Bluetooth device OR the function times out

waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Enhanced_Transmit_Power_Level (

unsigned int BluetoothStackID, Word_t Connection_Handle, Byte_t *StatusResult,

Word_t *Connection_HandleResult, SByte_t *Transmit_Power_Level_GFSKResult,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 196 of 737 January 10, 2014

SByte_t *Transmit_Power_Level_DQPSKResult,

SByte_t *Transmit_Power_Level_8DPSKResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth

Protocol Stack via a call to BSC_Initialize

ConnectionHandle Connection handle used to identify the connection

to be used, must be a Connection_Handle for an

ACL connection.

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the

Bluetooth device

Connection_HandleResult If function returns zero (success) the variable

pointed to by this parameter will contain the

Connection Handle Result returned from the

Bluetooth device.

Transmit_Power_Level_GFSKResult If function returns zero (success) the variable

pointed to by this parameter will contain the GFSK

Transmit Power level returned from the Bluetooth

device

Transmit_Power_Level_DQPSKResult If function returns zero (success) the variable

pointed to by this parameter will contain DQPSK

Transmit Power level returned from the Bluetooth

device.

Transmit_Power_Level_8DQPSKResult If function returns zero (success) the variable

pointed to by this parameter will contain the

8DQPSK Transmit Power Level returned from the

Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 197 of 737 January 10, 2014

HCI_Read_Best_Effort_Flush_Timeout

Issues the HCI_Read_Best_Effort_Flush_Timeout command to the Bluetooth device that

is associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). Reads the values of the Best Effort Flush Timeout. Note,

this function blocks until either a result is returned from the Bluetooth device OR the

function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Best_Effort_Flush_Timeout (unsigned int BluetoothStackID,

Word_t Logical_Link_Handle, Byte_t *StatusResult,

DWord_t *Best_Effort_Flush_TimeoutResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

Logical_Link_Handle Handle of Logical Link to which the command applies.

StatusResult If function returns zero (success) this variable will

contain the Status Result returned from the Bluetooth

device

Best_Effort_Flush_TimeoutResult If function returns zero (success) the variable pointed to

by this parameter will contain the Best Effort Flush

Timeout read from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Best_Effort_Flush_Timeout

Issues the HCI_Write_Best_Effort_Flush_Timeout command to the Bluetooth device that

is associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). Writes the values of the Best Effort Flush Timeout. Note,

this function blocks until either a result is returned from the Bluetooth device OR the

function times out waiting for a response from the Bluetooth device

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 198 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Write_Best_Effort_Flush_Timeout (unsigned int BluetoothStackID,

Word_t Logical_Link_Handle, DWord_t Best_Effort_Flush_Timeout,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Logical_Link_Handle Handle of Logical Link to which the command applies.

Best_Effort_Flush_Timeout Value to write to the Best Effort Flush Timeout of the specified

logical link.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Short_Range_Mode

Issues the HCI_Short_Range command to the Bluetooth device that is associated with the

Bluetooth Protocol Stack (which itself is specified with the BluetoothStackID parameter).

This command configures the Short Range Mode value. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for

a response from the Bluetooth device

Prototype:

int BTPSAPI HCI_Short_Range_Mode (unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Byte_t Short_Range_Mode, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Physical_Link_Handle Handle of the physical link to which the command applies.

Short_Range_Mode Configuration setting of Short Range Mode configuration

parameter. Possible values are (all others are reserverd):

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 199 of 737 January 10, 2014

HCI_SHORT_RANGE_MODE_DISABLED

HCI_SHORT_RANGE_MODE_ENABLED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

HCI_Read_LE_Host_Supported

Issues the HCI_Read_LE_Host_Supported command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_LE_Host_Supported(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *LE_Supported_HostResult,

Byte_t *Simultaneous_LE_HostResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

StatusResult If function returns zero (success) this variable will contain

the Status Result returned from the Bluetooth device

LE_Supported_HostResult If function is successful, this will contain the LE supported

host result. Possible values are

HCI_LE_SUPPORTED_HOST_LE_SUPPORTED_

HOST_ENABLED

HCI_LE_SUPPORTED_HOST_LE_SUPPORTED_

 HOST_DISABLED

Simultaneous_LE_HostResult If function is successful, this will contain the simultaneous

LE host result. Possible values are

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 200 of 737 January 10, 2014

HCI_LE_SIMULTANEOUS_LE_HOST_

SUPPORTED_ENABLED

HCI_LE_SIMULTANEOUS_LE_HOST_

SUPPORTED_DISABLED

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

HCI_Write_LE_Host_Supported

Issues the HCI_Read_LE_Write_Supported command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID parameter

followed by the Host supported LE parameters. Note, this function blocks until either a

result is returned from the Bluetooth device OR the function times out waiting for a

response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_LE_Host_Supported(unsigned int BluetoothStackID,

Byte_t *LE_Supported_HostResult, Byte_t *Simultaneous_LE_HostResult,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

LE_Supported_HostResult Used to set the LE supported feature bit on the host device.

Possible values are

HCI_LE_SUPPORTED_HOST_LE_SUPPORTED_

HOST_ENABLED

HCI_LE_SUPPORTED_HOST_LE_SUPPORTED_

HOST_DISABLED

Simultaneous_LE_HostResult Used to set the simultaneous LE and BR/EDR to same

device capable feature bit on the host device. Possible

values are

HCI_LE_SIMULTANEOUS_LE_HOST_

SUPPORTED_ENABLED

HCI_LE_SIMULTANEOUS_LE_HOST_

SUPPORTED_DISABLED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 201 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable will contain

the Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

2.2.5 Informational Parameters

The API functions in this section provide access to the Informational Parameters which are

settings established by the Bluetooth hardware manufacturer and which provide information about

the Bluetooth device and the capabilities of the Host Controller, Link Manager, and Baseband

sections. These parameters cannot be modified. The commands in this section are listed in the

table below.

Command Description

HCI_Read_Local_Version_Information Read the version information for the local device.

HCI_Read_Local_Supported_Features Read a list of the supported features for the local

device.

HCI_Read_Buffer_Size Read the size of the HCI buffers (used for

transmissions).

HCI_Read_Country_Code Read the Country Code status parameter, which

defines which range of frequency band of the ISM 2.4

GHz band will be used by the device.

HCI_Read_BD_ADDR Read the BD_ADDR, which is a 48-bit unique

identifier for a Bluetooth device.

HCI_Read_Local_Supported_Commands Read the list of HCI commands supported for the local

device.

HCI_ Read_Local_Extended_Features Read the requested page of the extended LMP

features.

HCI_Read_Data_Block_Size Reads information pertaining to the maximum

permitted data transfer over the controller and the data

buffering available in the controller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 202 of 737 January 10, 2014

HCI_Read_Local_Version_Information

This command reads the version information for the local Bluetooth device (several

components).

Prototype:

int BTPSAPI HCI_Read_Local_Version_Information(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *HCI_VersionResult, Word_t *HCI_RevisionResult, Byte_t

*LMP_VersionResult, Word_t *Manufacturer_NameResult,

Word_t *LMP_SubversionResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

HCI_VersionResult Major version for the Bluetooth hardware. Corresponds to

changes in the released specifications only. Possible values are:

HCI_VERSION_SPECIFICATION_1_0B

HCI_VERSION_SPECIFICATION_1_1

HCI_VERSION_SPECIFICATION_1_2

HCI_VERSION_SPECIFICATION_2_0

HCI_VERSION_SPECIFICATION_2_1

HCI_VERSION_SPECIFICATION_3_0

HCI_VERSION_SPECIFICATION_4_0

HCI_RevisionResult The HCI revision number

LMP_VersionResult The Link Manager Protocol version number. Possible values

are:

HCI_LMP_VERSION_BLUETOOTH_1_0

HCI_LMP_VERSION_BLUETOOTH_1_1

HCI_LMP_VERSION_BLUETOOTH_1_2

HCI_LMP_VERSION_BLUETOOTH_2_0

HCI_LMP_VERSION_BLUETOOTH_2_1

HCI_LMP_VERSION_BLUETOOTH_3_0

HCI_LMP_VERSION_BLUETOOTH_4_0

Manufacturer_NameResult Manufacturer code. Possible values are:

HCI_LMP_COMPID_MANUFACTURER_NAME_

ERICSSON_MOBILE_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

NOKIA_MOBILE_PHONES

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEL_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

IBM_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

TOSHIBA_CORPORATION

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 203 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

3COM

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICROSOFT

HCI_LMP_COMPID_MANUFACTURER_NAME_

LUCENT

HCI_LMP_COMPID_MANUFACTURER_NAME_

MOTOROLA

HCI_LMP_COMPID_MANUFACTURER_NAME_

INFINEON_TECHNOLOGIES_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_

CAMBRIDGE_SILICON_RADIO

HCI_LMP_COMPID_MANUFACTURER_NAME_

SILICON_WAVE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DIGIANSWER

HCI_LMP_COMPID_MANUFACTURER_NAME_

TEXAS_INSTRUMENTS

HCI_LMP_COMPID_MANUFACTURER_NAME_

PARTHUS_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

BROADCOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

MITEL_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

WIDCOMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

TELENCOMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

ATMEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

MITSUBISHI

HCI_LMP_COMPID_MANUFACTURER_NAME_

RTX_TELECOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

KC_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

NEWLOGIC

HCI_LMP_COMPID_MANUFACTURER_NAME_

TRANSILICA

HCI_LMP_COMPID_MANUFACTURER_NAME_

ROHDE_AND_SCHWARTZ

HCI_LMP_COMPID_MANUFACTURER_NAME_

TTPCOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

SIGNIA_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONEXANT_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 204 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

INVENTEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

AVM_BERLIN

HCI_LMP_COMPID_MANUFACTURER_NAME_

BANDSPEED

HCI_LMP_COMPID_MANUFACTURER_NAME_

MANSELLA

HCI_LMP_COMPID_MANUFACTURER_NAME_

NEC

HCI_LMP_COMPID_MANUFACTURER_NAME_

WAVEPLUS_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ALCATEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

PHILIPS_SEMICONDUCTORS

HCI_LMP_COMPID_MANUFACTURER_NAME_

C_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

OPEN_INTERFACE

HCI_LMP_COMPID_MANUFACTURER_NAME_

RF_MICRO_DEVICES

HCI_LMP_COMPID_MANUFACTURER_NAME_

HITACHI

HCI_LMP_COMPID_MANUFACTURER_NAME_

SYMBOL_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

TENOVIS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MACRONIX_INTERNATIONAL

HCI_LMP_COMPID_MANUFACTURER_NAME_

GCT_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

NORWOOD_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MEWTEL_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ST_MICROELECTRONICS

 HCI_LMP_COMPID_MANUFACTURER_NAME_

SYNOPSYS

HCI_LMP_COMPID_MANUFACTURER_NAME_

RED_M_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

COMMIL_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

CATC

HCI_LMP_COMPID_MANUFACTURER_NAME_

ECLIPSE_SL

HCI_LMP_COMPID_MANUFACTURER_NAME_

RENESAS_TECHNOLOGY_CORP

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 205 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

MOBILIAN_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

TERAX

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEGRATED_SYSTEM_SOLUTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

MATSUSHITA

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENNUM_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

RESEARCH_IN_MOTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

IPEXTREME

HCI_LMP_COMPID_MANUFACTURER_NAME_

SYSTEMS_AND_CHIPS

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUETOOTH_SIG

HCI_LMP_COMPID_MANUFACTURER_NAME_

SEIKO_EPSON_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEGRATED_SILICON_SOLUTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONWISE_TECHNOLOGY_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

PARROT_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_

SOCKET_MOBILE

HCI_LMP_COMPID_MANUFACTURER_NAME_

ATHEROS_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MEDIATEK_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUEGIGA

HCI_LMP_COMPID_MANUFACTURER_NAME_

MARVELL_TECHNOLOGY_GROUP

HCI_LMP_COMPID_MANUFACTURER_NAME_

3DSP_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

ACCEL_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONTINENTAL_AUTOMOTIVE_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_

APPLE_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_

STACCATO_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

AVAGO_TECHONOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_APT_

LIMITED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 206 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_SIRF_

TECHONOLIGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

TZERO_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_J_

AND_M_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

FREE2MOVE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_3DIJOY_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

PLANTRONICS_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_SONY_

ERICSSON_MOBILE_COMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

HARMAN_INTERNATIONAL_IND

HCI_LMP_COMPID_MANUFACTURER_NAME_

VIZIO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_NORDIC_S

EMICONDUCTOR_ASA

HCI_LMP_COMPID_MANUFACTURER_NAME_EM_

MICROELECTRONIC_MARIN_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_RALINK_T

ECHNOLOGY_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_BELKIN_

INTERNATIONAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

REALTEK_SEMICONDUCTOR_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

STONESTREET_ONE_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

WICENTRIC_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_RIVIERA_

WAVES_SAS

HCI_LMP_COMPID_MANUFACTURER_NAME_RDA_

MICROELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_GIBSON_G

UITARS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICOMMAND_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_BAND_

XI_INTERNATIONAL_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

HEWLETT_PACKARD_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_

9SOLUTIONS_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_GN_

NETCOM_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENERAL_MOTORS

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 207 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_A_

AND_D_ENGINEERING_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

MINDTREE_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_POLAR_

ELECTRO_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

BEAUTIFUL_ENTERPRISE_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_

BRIARTEK_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_SUMMIT_

DATA_COMMUNICATIONS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_SOUND_ID

HCI_LMP_COMPID_MANUFACTURER_NAME_

MONSTER_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONNECT_BLUE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_

SHANGHAI_SUPER_SMART_ELECTRON

HCI_LMP_COMPID_MANUFACTURER_NAME_GROUP_

SENSE_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ZOMM_

LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

SAMSUNG_ELECTRONICS_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

CREATIVE_TECHNOLOGY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_LAIRD_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_NIKE_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

LESSWIRE_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_MSTAR_

SEMICONDUCTOR_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

HANLYNN_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_A_AND_R_

CAMBRIDGE

HCI_LMP_COMPID_MANUFACTURER_NAME_SEERS_

TECHNOLOGY_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_SPORTS_

TRACKING_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

AUTONET_MOBILE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DELORME_PUBLISHING_COMPANY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_WUXI_

VIMICRO

HCI_LMP_COMPID_MANUFACTURER_NAME_

SENNHEISER_COMMUNICATIONS_AS

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 208 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

TIMEKEEPING_SYSTEMS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_LUDUS_

HELSINKI_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUERADIOS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

EQUINUX_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_GARMIN_

INTERNATIONAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ECOTEST

HCI_LMP_COMPID_MANUFACTURER_NAME_GN_

RESOUND_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_JAWBONE

HCI_LMP_COMPID_MANUFACTURER_NAME_TOPCON_

POSITIONING_SYSTEMS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_LABS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ZSCAN_

SOFTWARE

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUINTIC_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

STOLLMANN_E_V_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_FUNAI

_ELECTRIC_COMPANY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

ADVANCED_PANMOBIL_SYSTEMS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

THINKOPTICS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

UNIVERSAL_ELECTRONICS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_AIROHA_

TECHNOLOGY_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_NEC_

LIGHTING_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ODM_

TECHNOLOGY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUETREK_TECHNOLOGIES_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_ZERO_1_

TV_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_I_TECH_

DYNAMIC_GLOBAL_DIST_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ALPWISE

HCI_LMP_COMPID_MANUFACTURER_NAME_JIANGSU_

TOPPOWER_AUTOMOTIVE

HCI_LMP_COMPID_MANUFACTURER_NAME_COLORFY_

INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

GEOFORCE_INC

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 209 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_BOSE_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_SUUNTO_

OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

KENSINGTON_COMPUTER_PROD_GROUP

HCI_LMP_COMPID_MANUFACTURER_NAME_SR_

MEDIZINELEKTRONIK

HCI_LMP_COMPID_MANUFACTURER_NAME_VERTU_

CORPORATION_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_META_

WATCH_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_LINAK_

A_S

HCI_LMP_COMPID_MANUFACTURER_NAME_OTL_

DYNAMICS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_PANDA_

OCEAN_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_VISTEON_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_ARP_

DEVICES_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_MAGNETI_

MARELLI_S_P_A

HCI_LMP_COMPID_MANUFACTURER_NAME_CAEN_

RFID_SRL

HCI_LMP_COMPID_MANUFACTURER_NAME_

INGENIEUR_SYSTEMGRUPPE_ZAHN

HCI_LMP_COMPID_MANUFACTURER_NAME_GREEN_

THROTTLE_GAMES

HCI_LMP_COMPID_MANUFACTURER_NAME_

PETER SYSTEMTECHNIK_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

OMEGAWAVE_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_CINETIX

HCI_LMP_COMPID_MANUFACTURER_NAME_PASSIF_

SEMICONDUCTOR_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_SARIS_

CYCLING_GROUP_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_BEKEY_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

CLARINOX_TECHNOLOGIES_PTY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_BDE_

TECHNOLOGY_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_SWIRL_

NETWORKS

HCI_LMP_COMPID_MANUFACTURER_NAME_MESO_

INTERNATIONAL

HCI_LMP_COMPID_MANUFACTURER_NAME_TRELAB_

LTD

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 210 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_INNOVATION_CENTER_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_JOHNSON_

CONTROLS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_STARKEY_

LABORATORIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_S_POWER_

ELECTRONICS_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_ACE_

SENSOR_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_APLIX_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_AAMP_OF_

AMERICA

HCI_LMP_COMPID_MANUFACTURER_NAME_

STALMART_TECHNOLOGY_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_

AMICCOM_ELECTRONICS_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

SHENZHEN_EXCELSECU_DATA_TECH

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENEQ_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

ADIDAS_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_LG_

ELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_ONSET_

COMPUTER_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

SELFLY_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUUPPA_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_GELO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_EVLUMA

HCI_LMP_COMPID_MANUFACTURER_NAME_MC10

HCI_LMP_COMPID_MANUFACTURER_NAME_

BINAURIC_SE

HCI_LMP_COMPID_MANUFACTURER_NAME_BEATS_

ELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICROCHIP_TECHNOLOGY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ELGATO_

SYSTEMS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

ARCHOS_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_

DEXCOM_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_POLAR_

ELECTRO_EUROPE_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_DIALOG_

SEMICONDUCTOR_BV

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 211 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

TAIXINGBANG_TECHNOLOGY_HK_CO

HCI_LMP_COMPID_MANUFACTURER_NAME_

KAWANTECH

HCI_LMP_COMPID_MANUFACTURER_NAME_AUSTCO_

COMMUNICATION_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_TIMEX_

GROUP_USA_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_TECHNOLOGIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_CONNECTED_EXPERIENCES

HCI_LMP_COMPID_MANUFACTURER_NAME_

VOYETRA_TURTLE_BEACH

HCI_LMP_COMPID_MANUFACTURER_NAME_

TXTR_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

BIOSENTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_PROCTER_

AND_GAMBLE

HCI_LMP_COMPID_MANUFACTURER_NAME_HOSIDEN_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

MUZIK_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_MISFIT_

WEARABLES_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_GOOGLE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DANLERS_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

SEMILINK_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_INMUSIC_

BRANDS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_LS_

RESEARCH_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_EDEN_

SOFTWARE_CONSULTANTS_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

FRESHTEMP

HCI_LMP_COMPID_MANUFACTURER_NAME_KS_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_ACTS_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_VTRACK_

SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_NIELSEN_

KELLERMAN_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_SERVER_

TECHNOLOGY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

BIORESEARCH_ASSOCIATES

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 212 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_JOLLY_

LOGIC_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_ABOVE_

AVERAGE_OUTCOMES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

BITSPLITTERS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

PAYPAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_WITRON_

TECHNOLOGY_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_MORSE_

PROJECT_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_KENT_

DISPLAYS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

NAUTILUS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

SMARTIFIER_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ELCOMETER_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_VSN_

TECHNOLOGIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ACEUNI_

CORP_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

STICKNFIND

HCI_LMP_COMPID_MANUFACTURER_NAME_CRYSTAL_

CODE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_

KOUKAAM_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

DELPHI_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

VALENCETECH_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_

RESERVED

HCI_LMP_COMPID_MANUFACTURER_NAME_TYPO_

PRODUCTS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_TOMTOM_

INTERNATIONAL_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_

FUGOO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_KEISER_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_BANG_

AND_OLUFSEN_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_PLUS_

LOCATIONS_SYSTEMS_PTY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

UBIQUITOUS_COMPUTING_TECH_CORP

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 213 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

INNOVATIVE_YACHTTER_SOLUTIONS

LMP_SubversionResult The LMP sub-version number. These are defined by each

manufacturer.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Local_Supported_Features

This command reads a list of the local supported features of the Bluetooth hardware.

Note:

Each Page of the LMP Features is 64 bits (0 - 0x3F). If a Feature bit number is larger than

64 bits (0 - 0x3F) then it exists as an "Extended Feature" and exists on a non-zero page.

The actual LMP Features page can be found by dividing the bit number by 64 (or

(sizeof(LMP_Feature_t)*8).

Note:

Constants are provided below to determine the actual bit number within a Page

(HCI_LMP_FEATURE_PAGE_BIT_NUMBER_MASK) and the divisor to apply to the

bit numbers to determine the correct page

(HCI_LMP_FEATURE_PAGE_NUMBER_DIVISOR).

Prototype:

int BTPSAPI HCI_Read_Local_Supported_Features(unsigned int BluetoothStackID,

Byte_t *StatusResult, LMP_Features_t *LMP_FeaturesResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 214 of 737 January 10, 2014

LMP_FeaturesResult Bit mask list of supported features. Defined bit numbers are

(note that are all on Page 0 which is only applicable to this

function):

Bluetooth Version 1.1

HCI_LMP_FEATURE_THREE_SLOT_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_FIVE_SLOT_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_ENCRYPTION_BIT_NUMBER

HCI_LMP_FEATURE_SLOT_OFFSET_BIT_NUMBER

HCI_LMP_FEATURE_TIMING_ACCURACY_BIT_NUMBER

HCI_LMP_FEATURE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_HOLD_MODE_BIT_NUMBER

HCI_LMP_FEATURE_SNIFF_MODE_BIT_NUMBER

HCI_LMP_FEATURE_PARK_MODE_BIT_NUMBER

HCI_LMP_FEATURE_RSSI_BIT_NUMBER

HCI_LMP_FEATURE_CHANNEL_QUALITY_DRIVEN_

DATA_RATE_BIT_NUMBER

HCI_LMP_FEATURE_SCO_LINK_BIT_NUMBER

HCI_LMP_FEATURE_HV2_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_HV3_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_U_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_A_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_CVSD_BIT_NUMBER

HCI_LMP_FEATURE_PAGING_SCHEME_BIT_NUMBER

HCI_LMP_FEATURE_POWER_CONTROL_BIT_NUMBER

Bluetooth Version 1.2

HCI_LMP_FEATURE_ROLE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_PARK_STATE_BIT_NUMBER

HCI_LMP_FEATURE_POWER_CONTROL_REQUESTS_

BIT_NUMBER

HCI_LMP_FEATURE_PAGING_PARAMETER_

NEGOTIATION_BIT_NUMBER

HCI_LMP_FEATURE_TRANSPARENT_SYNCHRONOUS_

DATA_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_LEAST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MIDDLE_

BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MOST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_BROADCAST_ENCRYPTION_BIT_

NUMBER

HCI_LMP_FEATURE_ENHANCED_INQUIRY_SCAN_BIT_N

UMBER

HCI_LMP_FEATURE_INTERLACED_INQUIRY_SCAN_

BIT_NUMBER

HCI_LMP_FEATURE_INTERLACED_PAGE_SCAN_BIT_

NUMBER

HCI_LMP_FEATURE_RSSI_WITH_INQUIRY_RESULTS_

BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 215 of 737 January 10, 2014

HCI_LMP_FEATURE_EXTENDED_SCO_LINKS_EV3_

PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_EV4_PACKETS_BIT_

NUMBER

HCI_LMP_FEATURE_EXTENDED_EV5_PACKETS_BIT_

NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_FEATURES_BIT_

NUMBER

Bluetooth Version 2.0

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_

ACL_2_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_

ACL_3_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_3_SLOT_ENHANCED_DATA_RATE_

ACL_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_5_SLOT_ENHANCED_DATA_RATE_

ACL_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_ESCO_

2_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_ESCO_

3_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_3_SLOT_ENHANCED_DATA_RATE_

ESCO_PACKETS_BIT_NUMBER

Bluetooth Version 2.1

HCI_LMP_FEATURE_SNIFF_SUBRATING_BIT_NUMBER

HCI_LMP_FEATURE_PAUSE_ENCRYPTION_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_INQUIRY_RESPONSE_

BIT_NUMBER

HCI_LMP_FEATURE_SECURE_SIMPLE_PAIRING_BIT_

NUMBER

HCI_LMP_FEATURE_ENCAPSULATED_PDU_BIT_NUMBER

HCI_LMP_FEATURE_ERRONEOUS_DATA_REPORTING_

BIT_NUMBER

HCI_LMP_FEATURE_NON_FLUSHABLE_PACKET_

BOUNDARY_FLAG_BIT_NUMBER

HCI_LMP_FEATURE_LINK_SUPERVISION_TIMEOUT_

CHANGED_EVENT_BIT_NUMBER

HCI_LMP_FEATURE_INQUIRY_RESPONSE_TX_POWER_

LEVEL_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_FEATURES_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 216 of 737 January 10, 2014

Bluetooth Version 3.0

HCI_LMP_FEATURE_ENHANCED_POWER_CONTROL_

BIT_NUMBER

Bluetooth Version 4.0

HCI_LMP_FEATURE_BR_EDR_NOT_SUPPORTED_BIT_

NUMBER

HCI_LMP_FEATURE_LE_SUPPORTED_BIT_NUMBER

HCI_LMP_FEATURE_SIMULTANEOUS_LE_BR_EDR_

TO_SAME_DEVICE_SUPPORTED_BIT_NUMBER

Useful macros defined for manipulation of LMP Features are:

COMPARE_LMP_FEATURES(feats1, feats2)

ASSIGN_LMP_FEATURES(feats, MSByte, … LSByte)

SET_FEATURES_BIT(feats, bitnumb)

RESET_FEATURES_BIT(feats, bitnum)

TEST_FEATURES_BIT(feats, bitnum)

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Buffer_Size

This command reads the maximum size of the data portion of HCI ACL and SCO Data

Packets sent from the Host to the Host Controller (i.e., the Host Controller’s size limits),

and the total number of HCI ACL and SCO Data Packets that can be stored in the data

buffers of the Host Controller. The Host must segment the data to be transmitted

according to these sizes, so that the HCI Data Packets will contain data with up to these

sizes. This command must be issued by the Host before it sends any data to the Host

Controller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 217 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Buffer_Size(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *HC_ACL_Data_Packet_Length,

Byte_t *HC_SCO_Data_Packet_Length,

Word_t *HC_Total_Num_ACL_Data_Packets,

Word_t *HC_Total_Num_SCO_Data_Packets)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult Returned HCI status code.

HC_ACL_Data_Packet_Length Maximum length (in bytes) of the data portion of each

HCI ACL Data Packet passed to the Host Controller.

HC_SCO_Data_Packet_Length Maximum length (in bytes) of the data portion of each

HCI SCO Data Packet passed to the Host Controller.

HC_Total_Num_ACL_Data_Packets Maximum number of ACL Data Packets that can be

stored in the Host Controller.

HC_Total_Num_SCO_Data_Packets Maximum number of SCO Data Packets that can be

stored in the Host Controller.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Country_Code

This command reads the Country_Code parameter, which defines which range of

frequency band of the ISM 2.4 GHz band will be used by the device since each country

has local regulatory bodies regulating which ISM 2.4 GHz frequency ranges can be used.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 218 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Country_Code(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Country_CodeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Country_CodeResult Returned Country Code. Possible values are:

HCI_COUNTRY_CODE_NORTH_AMERICA_AND_EUROPE

HCI_COUNTRY_CODE_FRANCE

HCI_COUNTRY_CODE_SPAIN

HCI_COUNTRY_CODE_JAPAN

HCI_COUNTRY_CODE_NORTH_AMERICA_EUROPE_

JAPAN_NOT_FRANCE (ver 1.1 of Bluetooth)

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_BD_ADDR

This command reads the BD_ADDR parameter, which is a 48-bit unique identifier for a

Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_BD_ADDR(unsigned int BluetoothStackID, Byte_t *StatusResult,

BD_ADDR_t *BD_ADDRResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 219 of 737 January 10, 2014

BD_ADDRResult The local device’s address/identifier.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Local_Supported_Commands

This command reads the list of HCI commands supported for the local device.

Prototype:

int BTPSAPI HCI_Read_Local_Supported_Commands(unsigned int BluetoothStackID,

Byte_t *StatusResult, Supported_Commands_t *Supported_CommandsResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize

StatusResult Returned HCI status code.

Supported_CommandsResult Bit mask for each HCI command. The defined bit numbers

are:

HCI_SUPPORTED_COMMAND_INQUIRY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_INQUIRY_CANCEL_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_PERIODIC_INQUIRY_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_EXIT_PERIODIC_INQUIRY_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CREATE_CONNECTION_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_DISCONNECT_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_ADD_SCO_CONNECTION_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_CANCEL_CREATE_C

ONNECTION_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 220 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_ACCEPT_CONNECTION_R

EQUEST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_REJECT_CONNECTION_R

EQUEST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LINK_KEY_REQUEST_BI

T_NUMBER

HCI_SUPPORTED_COMMAND_LINK_KEY_REQUEST_N

EGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_PIN_CODE_REQUEST_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_PIN_CODE_REQUEST_N

EGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CHANGE_CONNECTION_P

ACKET_TYPE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_AUTHENTICATION_R

EQUEST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SET_CONNECTION_E

NCRYPTION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CHANGE_CONNECTION_L

INK_KEY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_MASTER_LINK_KEY_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_REMOTE_NAME_R

EQUEST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CANCEL_REMOTE_N

AME_REQUEST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_REMOTE_SUPPORTED_F

EATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_REMOTE_EXTENDED_F

EATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_REMOTE_VERSION_I

NFORMATION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_CLOCK_OFFSET_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LMP_HANDLE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_HOLD_MODE_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_EXIT_SNIFF_MODE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_PARK_STATE_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_EXIT_PARK_STATE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_QOS_SETUP_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_ROLE_DISCOVERY_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_SWITCH_ROLE_BIT_N

UMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 221 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_READ_LINK_POLICY_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LINK_POLICY_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_DEFAULT_LINK_P

OLICY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_DEFAULT_LINK_P

OLICY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_FLOW_SPECIFICATION_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_SET_EVENT_MASK_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_RESET_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SET_EVENT_FILTER_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_FLUSH_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_PIN_TYPE_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PIN_TYPE_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_CREATE_NEW_UNIT_

KEY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_STORED_LINK_

KEY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_STORED_LINK_

KEY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_DELETE_STORED_LINK_K

EY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LOCAL_NAME_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_NAME_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_CONNECTION_

ACCEPT_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_CONNECTION_

ACCEPT_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_PAGE_TIMEOUT_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PAGE_TIMEOUT_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_SCAN_ENABLE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_SCAN_ENABLE_BI

T_NUMBER

HCI_SUPPORTED_COMMAND_READ_PAGE_SCAN_A

CTIVITY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PAGE_SCAN_A

CTIVITY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_INQUIRY_S

CAN_ACTIVITY_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 222 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_WRITE_INQUIRY_S

CAN_ACTIVITY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_AUTHENTICATION_

ENABLE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_AUTHENTICATION_

ENABLE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_ENCRYPTION_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_ENCRYPTION_M

ODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_CLASS_OF_D

EVICE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_CLASS_OF_D

EVICE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_VOICE_SETTING_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_VOICE_SETTING_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_AUTOMATIC_F

LUSH_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_AUTOMATIC_

FLUSH_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_NUM_BROADCAST_R

ETRANSMISSIONS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_NUM_BROADCAST_

RETRANSMISSIONS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_HOLD_MODE_A

CTIVITY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_HOLD_MODE_

ACTIVITY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_TRANSMIT_P

OWER_LEVEL_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_SYNCHRONOUS_F

LOW_CONTROL_ENABLE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_SYNCHRONOUS_F

LOW_CONTROL_ENABLE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SET_HOST_CONTROLLER_T

O_HOST_FLOW_CONTROL_BIT_NUMBER

HCI_SUPPORTED_COMMAND_HOST_BUFFER_SIZE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_HOST_NUMBER_OF_C

OMPLETED_PACKETS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LINK_SUPERVISION_

TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LINK_SUPERVISION_T

IMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_NUMBER_S

UPPORTED_IAC_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_CURRENT_IAC_

LAP_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 223 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_WRITE_CURRENT_IAC_

LAP_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_PAGE_SCAN_P

ERIOD_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PAGE_SCAN_P

ERIOD_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_PAGE_SCAN_M

ODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PAGE_SCAN_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SET_AFH_CHANNEL_

CLASSIFICATION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_INQUIRY_SCAN_T

YPE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_INQUIRY_SCAN_T

YPE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_INQUIRY_MODE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_INQUIRY_MODE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_PAGE_SCAN_T

YPE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_PAGE_SCAN_T

YPE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_AFH_CHANNEL_

ASSESSMENT_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_AFH_CHANNEL_A

SSESSMENT_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_VERSION_I

NFORMATION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_SUPPORTED_F

EATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_EXTENDED_F

EATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_BUFFER_SIZE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_COUNTRY_CODE_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_BD_ADDR_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_READ_FAILED_CONTACT_

COUNT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_RESET_FAILED_CONTACT_

COUNT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_GET_LINK_QUALITY_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_READ_RSSI_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_READ_AFH_CHANNEL_

MAP_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 224 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_READ_BD_CLOCK_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_READ_LOOPBACK_MODE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LOOPBACK_M

ODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_ENABLE_DEVICE_U

NDER_TEST_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SETUP_SYNCHRONOUS_C

ONNECTION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_ACCEPT_SYNCHRONOUS_C

ONNECTION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_REJECT_SYNCHRONOUS_

CONNECTION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_EXTENDED_

INQUIRY_RESPONSE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_EXTENDED_

INQUIRY_RESPONSE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_REFRESH_ENCRYPTION_K

EY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SNIFF_SUBRATING_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_SIMPLE_PAIRING_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_SIMPLE_PAIRING_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_OOB_

DATA_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_INQUIRY_

RESPONSE_TRANSMIT_POWER_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_INQUIRY_

TRANSMIT_POWER_LEVEL_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_DEFAULT_

ERRONEOUS_DATA_REPORTING_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_DEFAULT_

ERRONEOUS_DATA_REPORTING_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_IO_CAPABILITY_

REQUEST_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_USER_CONFIRMATION_

REQUEST_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_USER_CONFIRMATION_

REQUEST_NEGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_USER_PASSKEY_

REQUEST_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_USER_PASSKEY_

REQUEST_NEGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_REMOTE_OOB_DATA_

REQUEST_REPLY_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 225 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_WRITE_SIMPLE_PAIRING_

DEBUG_MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_ENHANCED_FLUSH_BIT_N

UMBER

HCI_SUPPORTED_COMMAND_REMOTE_OOB_DATA_

REQUEST_NEGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SEND_KEYPRESS_

NOTIFICATION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_IO_CAPABILITIES_

RESPONSE_NEGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_ENCRYPTION_

KEY_SIZE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CREATE_PHYSICAL_

LINK_BIT_NUMBER

HCI_SUPPORTED_COMMAND_ACCEPT_PHYSICAL_

LINK_BIT_NUMBER

HCI_SUPPORTED_COMMAND_DISCONNECT_PHYSICAL_

LINK_BIT_NUMBER

HCI_SUPPORTED_COMMAND_CREATE_LOGICAL_LINK_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_ACCEPT_LOGICAL_LINK_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_DISCONNECT_LOGICAL_LI

NK_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LOGICAL_LINK_CANCEL_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_FLOW_SPEC_MODIFY_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOGICAL_LINK_

ACCEPT_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LOGICAL_LINK_

ACCEPT_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SET_EVENT_MASK_

PAGE_2_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCATION_

DATA_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LOCATION_

DATA_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_AMP_

INFO_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LOCAL_AMP_

ASSOC_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_REMOTE_AMP_

ASSOC_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_FLOW_CONTROL_M

ODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_FLOW_CONTROL_

MODE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_DATA_BLOCK_

SIZE_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 226 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_ENABLE_AMP_

RECEIVER_REPORTS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_AMP_TEST_END_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_AMP_TEST_COMMAND_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_ENHANCED_

TRANSMIT_POWER_LEVEL_BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_BEST_EFFORT_

FLUSH_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_BEST_EFFORT_

FLUSH_TIMEOUT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_SHORT_RANGE_MODE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_READ_LE_HOST_

SUPPORT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_WRITE_LE_HOST_

SUPPORT_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_EVENT_MASK_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_BUFFER_

SIZE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_LOCAL_

SUPPORTED_FEATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_RANDOM_

ADDRESS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_ADVERTISING_

PARAMETERS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_ADVERTISING_

CHANNEL_TX_POWER_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_ADVERTISING_

DATA_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_SCAN_

RESPONSE_DATA_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_ADVERTISE_

ENABLE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_SCAN_

PARAMETERS_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_SCAN_ENABLE_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_CREATE_

CONNECTION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_CREATE_

CONNECTION_CANCEL_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_WHITE_LIST_

SIZE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_CLEAR_WHITE_LIST_B

IT_NUMBER

HCI_SUPPORTED_COMMAND_LE_ADD_DEVICE_TO_

WHITE_LIST_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 227 of 737 January 10, 2014

HCI_SUPPORTED_COMMAND_LE_REMOVE_DEVICE_

FROM_WHITE_LIST_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_CONNECTION_

UPDATE_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_SET_HOST_

CHANNEL_CLASSIFICATION_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_CHANNEL_

MAP_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_REMOTE_

USED_FEATURES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_ENCRYPT_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_LE_RAND_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_START_ENCRYPTION_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_LONG_TERM_KEY_

REQUEST_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_LONG_TERM_KEY_

REQUEST_NEGATIVE_REPLY_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_READ_SUPPORTED_

STATES_BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_RECEIVER_TEST_BIT_

NUMBER

HCI_SUPPORTED_COMMAND_LE_TRANSMITTER_TEST_

BIT_NUMBER

HCI_SUPPORTED_COMMAND_LE_TEST_END_BIT_

NUMBER

Useful macros defined for manipulation of Supported

Commands are:

COMPARE_SUPPORTED_COMMANDS(cmd1, cmd2)

SET_SUPPORTED_COMMANDS_BIT(cmd, bitnumb)

RESET_SUPPORTED_COMMANDS_BIT(cmd, bitnum)

TEST_SUPPORTED_COMMANDS_BIT(cmd, bitnum)

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 228 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Local_Extended_Features

This command returns the requested page of the extended LMP features.

Note:

Each Page of the LMP Features is 64 bits (0 - 0x3F). If a Feature bit number is larger than

64 bits (0 - 0x3F) then it exists as an "Extended Feature" and exists on a non-zero page.

The actual LMP Features page can be found by dividing the bit number by 64 (or

(sizeof(LMP_Feature_t)*8).

Note:

Constants are provided below to determine the actual bit number within a Page

(HCI_LMP_FEATURE_PAGE_BIT_NUMBER_MASK) and the divisor to apply to the

bit numbers to determine the correct page

(HCI_LMP_FEATURE_PAGE_NUMBER_DIVISOR).

Prototype:

int BTPSAPI HCI_Read_Local_Extended_Features(unsigned int BluetoothStackID, Byte_t

PageNumber, Byte_t *StatusResult, Byte_t *Page_NumberResult,

Byte_t *Maximum_Page_NumberResult,

LMP_Features_t *Extended_LMP_FeaturesResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

PageNumber Requests the normal LMP features as returned by

HCI_Read_Local_Supported_Features (if 0) or the

corresponding page of features (non-zero).

StatusResult Returned HCI status code.

Page_NumberResult Returned the normal LMP features as returned by

HCI_Read_Local_Supported_Features (if 0) or the

corresponding page of features (non-zero).

Maximum_Page_NumberResult The highest features page number which contains non-zero

bits for the local device.

Extended_LMP_FeaturesResult Bit map of requested page of LMP features. Defined bit

numbers are (note some of these feature bit numbers are not

on page zero – see note above):

Bluetooth Version 1.1

HCI_LMP_FEATURE_THREE_SLOT_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_FIVE_SLOT_PACKETS_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 229 of 737 January 10, 2014

HCI_LMP_FEATURE_ENCRYPTION_BIT_NUMBER

HCI_LMP_FEATURE_SLOT_OFFSET_BIT_NUMBER

HCI_LMP_FEATURE_TIMING_ACCURACY_BIT_NUMBER

HCI_LMP_FEATURE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_HOLD_MODE_BIT_NUMBER

HCI_LMP_FEATURE_SNIFF_MODE_BIT_NUMBER

HCI_LMP_FEATURE_PARK_MODE_BIT_NUMBER

HCI_LMP_FEATURE_RSSI_BIT_NUMBER

HCI_LMP_FEATURE_CHANNEL_QUALITY_DRIVEN_

DATA_RATE_BIT_NUMBER

HCI_LMP_FEATURE_SCO_LINK_BIT_NUMBER

HCI_LMP_FEATURE_HV2_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_HV3_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_U_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_A_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_CVSD_BIT_NUMBER

HCI_LMP_FEATURE_PAGING_SCHEME_BIT_NUMBER

HCI_LMP_FEATURE_POWER_CONTROL_BIT_NUMBER

Bluetooth Version 1.2

HCI_LMP_FEATURE_ROLE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_PARK_STATE_BIT_NUMBER

HCI_LMP_FEATURE_POWER_CONTROL_REQUESTS_

BIT_NUMBER

HCI_LMP_FEATURE_PAGING_PARAMETER_

NEGOTIATION_BIT_NUMBER

HCI_LMP_FEATURE_TRANSPARENT_SYNCHRONOUS_

DATA_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_LEAST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MIDDLE_

BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MOST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_BROADCAST_ENCRYPTION_BIT_

NUMBER

HCI_LMP_FEATURE_ENHANCED_INQUIRY_SCAN_BIT_N

UMBER

HCI_LMP_FEATURE_INTERLACED_INQUIRY_SCAN_

BIT_NUMBER

HCI_LMP_FEATURE_INTERLACED_PAGE_SCAN_BIT_

NUMBER

HCI_LMP_FEATURE_RSSI_WITH_INQUIRY_RESULTS_

BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_SCO_LINKS_EV3_

PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_EV4_PACKETS_BIT_

NUMBER

HCI_LMP_FEATURE_EXTENDED_EV5_PACKETS_BIT_

NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 230 of 737 January 10, 2014

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_FEATURES_BIT_

NUMBER

Bluetooth Version 2.0

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_

ACL_2_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_

ACL_3_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_3_SLOT_ENHANCED_DATA_RATE_

ACL_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_5_SLOT_ENHANCED_DATA_RATE_

ACL_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_ESCO_

2_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_ENHANCED_DATA_RATE_ESCO_

3_MBPS_MODE_BIT_NUMBER

HCI_LMP_FEATURE_3_SLOT_ENHANCED_DATA_RATE_

ESCO_PACKETS_BIT_NUMBER

Bluetooth Version 2.1

HCI_LMP_FEATURE_SNIFF_SUBRATING_BIT_NUMBER

HCI_LMP_FEATURE_PAUSE_ENCRYPTION_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_INQUIRY_RESPONSE_

BIT_NUMBER

HCI_LMP_FEATURE_SECURE_SIMPLE_PAIRING_BIT_

NUMBER

HCI_LMP_FEATURE_ENCAPSULATED_PDU_BIT_NUMBER

HCI_LMP_FEATURE_ERRONEOUS_DATA_REPORTING_

BIT_NUMBER

HCI_LMP_FEATURE_NON_FLUSHABLE_PACKET_

BOUNDARY_FLAG_BIT_NUMBER

HCI_LMP_FEATURE_LINK_SUPERVISION_TIMEOUT_

CHANGED_EVENT_BIT_NUMBER

HCI_LMP_FEATURE_INQUIRY_RESPONSE_TX_POWER_

LEVEL_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_FEATURES_BIT_NUMBER

HCI_LMP_FEATURE_SECURE_SIMPLE_PAIRING_

HOST_SUPPORT_BIT_NUMBER

Bluetooth Version 3.0

HCI_LMP_FEATURE_ENHANCED_POWER_CONTROL_

BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 231 of 737 January 10, 2014

Bluetooth Version 4.0

HCI_LMP_FEATURE_BR_EDR_NOT_SUPPORTED_BIT_

NUMBER

HCI_LMP_FEATURE_LE_SUPPORTED_BIT_NUMBER

HCI_LMP_FEATURE_SIMULTANEOUS_LE_BR_EDR_

TO_SAME_DEVICE_SUPPORTED_BIT_NUMBER

HCI_LMP_FEATURE_LE_SUPPORTED_HOST_BIT_NUMBER

HCI_LMP_FEATURE_SIMULTANEOUS_LE_AND_BR_

EDR_TO_SAME_DEVICE_CAPABILE_BIT_NUMBER

Useful macros defined for manipulation of LMP Features are:

COMPARE_LMP_FEATURES(feats1, feats2)

ASSIGN_LMP_FEATURES(feats, MSByte, … LSByte)

SET_FEATURES_BIT(feats, bitnumb)

RESET_FEATURES_BIT(feats, bitnum)

TEST_FEATURES_BIT(feats, bitnum)

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Data_Block_Size

Issues the HCI_Read_Data_Block_Size command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This commands reads information regarding maximum data

transfers over the controller and the data buffering that is available. Note, this function

blocks until either a result is returned from the Bluetooth device OR the function times out

waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_ Data_Block_Size (unsigned int BluetoothStackID,

 Byte_t *StatusResult, Word_t *Max_ACL_Data_Packet_LengthResult, Word_t

*Data_Block_LengthResult, Word_t *Total_Num_Data_BlocksResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 232 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If this function returns zero (success) then variable

pointed to by StatusResult will contain the status

result returned from the Bluetooth device.

Max_ACL_Data_Packet_LengthResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Max

ACL Data Packet Length returned from the

Bluetooth device.

Data_Block_LengthResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Data

Block Length returned from the Bluetooth device.

Total_Num_Data_BlocksResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Total

Number Data Blocks returned from the Bluetooth

device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.6 Status Parameters

The Status Parameters retrieved via the commands in this section provide information about the

current state of the Host Controller, Link Manager, and Baseband. The Host cannot modify any

of these parameters other than to reset certain parameters. The API commands available in this

section are listed in the table below.

Command Description

HCI_Read_Failed_Contact_Counter Read the Failed_Contact_Counter parameter for a

particular connection to another device.

HCI_Reset_Failed_Contact_Counter Reset the Failed_Contact_Counter parameter for a

particular connection to another device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 233 of 737 January 10, 2014

Command Description

HCI_Get_Link_Quality Read the Link_Quality for the specified connection.

HCI_Read_RSSI Read the Received Signal Strength Indication (RSSI)

for a connection with another Bluetooth device.

HCI_Read_AFH_Channel_Map Read AFH channel map.

HCI_Read_Clock Read local or piconet Bluetooth clock.

HCI_Read_Encryption_Key_Size Reads the current encryption key size for a specified

link.

HCI_Read_Local_AMP_Info Reads information about the amp controller.

HCI_Read_Local_AMP_ASSOC Returns a fragment of AMP_ASSOC structure.

HCI_Write_Remote_AMP_ASSOC Write an AMP_ASSOC fragment to AMP controller.

HCI_Read_Failed_Contact_Counter

This command reads the Failed_Contact_Counter parameter for a particular (ACL)

connection to another device. The Failed_Contact_Counter records the number of

consecutive incidents in which either the slave or master didn't respond before the flush

timeout had expired, and the L2CAP packet that was currently being transmitted was

automatically 'flushed'. This counter is reset when the connection is initiated, when the

L2CAP packet is acknowledged for that connection, and when the reset command is

issued (see next command).

Prototype:

int BTPSAPI HCI_Read_Failed_Contact_Counter(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Word_t *Failed_Contact_CounterResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the

Connection Complete event associated with the

HCI_Create_Connection command.

StatusResult Returned HCI status code (see table in HCI introduction).

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Failed_Contact_CounterResult Number of consecutive failed contacts for this connection.

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 234 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Reset_Failed_Contact_Counter

Reset the Failed_Contact_Counter parameter for the specified connection.

Prototype:

int BTPSAPI HCI_Reset_Failed_Contact_Counter(unsigned int BluetoothStackID, Word_t

Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 235 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Get_Link_Quality

This command reads the Link_Quality for the specified connection.

Prototype:

int BTPSAPI HCI_Get_Link_Quality(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Byte_t *Link_QualityResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

Link_QualityResult The current quality of the link between the local and remote

devices, range 0 to 255, where higher is better.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 236 of 737 January 10, 2014

HCI_Read_RSSI

This command reads the difference between the measured Received Signal Strength

Indication (RSSI) and the limits of the Golden Receive Power Range for an ACL

connection to another Bluetooth device. The returned value is how many dB above (if

positive) or how many dB below (if negative) the RSSI is relative to the limits. A reading

of zero indicates that the RSSI is inside the Golden Receive Power Range.

Prototype:

int BTPSAPI HCI_Read_RSSI(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Byte_t *RSSIResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

RSSIResult Difference between the measured RSSI and the limits of the

Golden Receive Power Range. This value may range from

-128 to +127 dB.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_AFH_Channel_Map

This command will return the values for the AFH_Mode and AFH_Channel_Map for the

specified Connection Handle.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 237 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_AFH_Channel_Map(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

Byte_t *AFH_ModeResult, AFH_Channel_Map_t *AFH_Channel_MapResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

AFH_ModeResult Valued returned for AFH enabled or disabled. Possible values

are:

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_A

SSESSMENT_DISABLED

HCI_AFH_CHANNEL_ASSESSMENT_MODE_CONTROLLER_A

SSESSMENT_ENABLED

AFH_Channel_MapResult If enabled (AFH_ModeResult), this parameter returns a 79 bit

field where each bit represents a frequency that is either used or

not used in the hopping sequences.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Clock

This command will read the estimate of the value of the Bluetooth Clock.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 238 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Clock(unsigned int BluetoothStackID, Byte_t Which_Clock,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

DWord_t *ClockResult, Word_t *AccuracyResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Which_Clock Determines if the local clock or the piconet clock is returned.

Possible values are:

HCI_CLOCK_LOCAL_CLOCK

HCI_CLOCK_PICONET_CLOCK

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

StatusResult Returned HCI status code.

Connection_HandleResult Unique identifier for the connection handle for which the

operation was done.

ClockResult Bluetooth clock of the device requested.

AccuracyResult Bluetooth clock error.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 239 of 737 January 10, 2014

HCI_Read_Encryption_Key_Size

Issues the HCI_Read_Encryption_Key_Size command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command reads the size of the current encryption key

for a specified connection. Note, this function blocks until either a result is returned from

the Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Read_Encryption_Key_Size(unsigned int BluetoothStackID, Word_t

Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult, Byte_t

*Key_SizeResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Handle of connection that the encryption key size will be read

from. This should be for an active ACL connection.

StatusResult If this function returns zero (success) then variable pointed to by

StatusResult will contain the status result returned from the

Bluetooth device.

Connection_HandleResult If this function returns zero (success) then variable pointed to by

this parameter will contain the Connection Handle returned

from the device.

Key_SizeResult If this function returns zero (success) then variable pointed to by

this parameter will contain the Encryption Key Size read from

the device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 240 of 737 January 10, 2014

HCI_Read_Local_AMP_Info

Issues the HCI_Read_Local_AMP_Info command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command reads information about the AMP controller.

Note, this function blocks until either a result is returned from the Bluetooth device OR

the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Local_AMP_Info (unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *AMP_StatusResult, DWord_t *Total_BandwidthResult,

DWord_t *Max_Guaranteed_BandwidthResult, DWord_t *Min_LatencyResult, DWord_t

*Max_PDU_SizeResult, Byte_t *Controller_TypeResult,

Word_t *PAL_CapabilitiesResult, Word_t *Max_AMP_ASSOC_LengthResult, DWord_t

*Max_Flush_TimeoutResult, DWord_t *Best_Effort_Flush_TimeoutResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

StatusResult If this function returns zero (success) then variable

pointed to by StatusResult will contain the status result

returned from the Bluetooth device.

AMP_StatusResult If this function returns zero (success) then variable

pointed to by this parameter will contain the AMP

Status returned from the Bluetooth device. Valid values

are 0x00 – 0x06. Consult the Host Controller Interface

Function specifications for a full description of the

possible meanings for each value. The following is a

brief description of the possible values:

HCI_AMP_STATUS_AMP_STATUS_AVAILABLE_R

ADIO_POWERED_DOWN

HCI_AMP_STATUS_AMP_STATUS_AVAILABLE_B

LUETOOTH_TECHNOLOGY_ONLY

HCI_AMP_STATUS_AMP_STATUS_NO_

CAPICITY_FOR_BLUETOOTH_

OPERATION

HCI_AMP_STATUS_AMP_STATUS_LOW_

CAPICITY_FOR_BLUETOOTH_

OPERATION

HCI_AMP_STATUS_AMP_STATUS_MEDIUM_

CAPICITY_FOR_BLUETOOTH_

OPERATION

HCI_AMP_STATUS_AMP_STATUS_HIGH_

CAPICITY_FOR_BLUETOOTH_

OPERATION

HCI_AMP_STATUS_AMP_STATUS_FULL_

CAPICITY_FOR_BLUETOOTH_

OPERATION

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 241 of 737 January 10, 2014

Total_BandwidthResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Total

Bandwidth returned from the device. This is an upper

bound on the data rate that can be achieved over HCI

and accounts for the total bandwidth achieved over the

HCI transport. Expressed in kbps.

Max_Guaranteed_BandwidthResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Max

Guaranteed Bandwidth returned from the Bluetooth

device. This is the maximum bandwidth the AMP

controller can quarantee for a single logical link over

HCI. Expressed in kbps.

Min_LatencyResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Min

Latency returned from the device. This is the minimum

latency, in microsenconds, that the AMP controller can

quarantee for a logical channel.

Max_PDU_SizeResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Max PDU

Size returned from the Bluetooth device. This is the

maximum size of an L2CAP PDU that the AMP will

accept.

Controller_TypeResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Controller

Type returned from the Bluetooth device. Possible

values are:

HCI_AMP_CONTROLLER_TYPE_CONTROLLER_

TYPE_BR_EDR

HCI_AMP_CONTROLLER_TYPE_CONTROLLER_

TYPE_802_11

PAL_CapabilitiesResult If this function returns zero (success) then variable

pointed to by this parameter will contain the PAL

Capabilities returned from the Bluetooth device.

Possible values are:

HCI_AMP_PAL_CAPABILITIES_SERVICE_TYPE_

NOT_GUARANTEED_BIT_VALUE

HCI_AMP_PAL_CAPABILITIES_SERVICE_TYPE_

GUARANTEED_BIT_VALUE

Max_AMP_ASSOC_LengthResult If this function returns zero (success) then variable

pointed to by this parameter will contain the MAX

Amp ASSOC Length returned from the Bluetooth

device. This value will not be larger than:

HCI_AMP_ASSOC_FRAGMENT_SIZE_MAXIMUM_

FRAGMENT_SIZE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 242 of 737 January 10, 2014

Max_Flush_TimeoutResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Max Flush

Timeout returned from the Bluetooth device.

Best_Effort_Flush_TimeoutResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Max Flush

Timeout returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Read_Local_AMP_ASSOC

Issues the HCI_Read_Local_AMP_ASSOC command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command returns a fragment of the AMP_ASSOC

structure. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Read_Local_AMP_ASSOC (unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Word_t Length_So_Far,

Word_t Max_Remote_AMP_ASSOC_Length, Byte_t

AMP_ASSOC_Fragment_Buffer_Length, Byte_t *StatusResult,

Byte_t *Physical_Link_HandleResult,

Word_t *AMP_ASSOC_Remaining_LengthResult,

Byte_t *AMP_ASSOC_FragmentLengthResult, Byte_t AMP_ASSOC_FragmentResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth

Protocol Stack via a call to BSC_Initialize

Physical_Link_Handle AMP physical link handle, may be set to 0x00 if

command is called outside of physical link

creation context.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 243 of 737 January 10, 2014

Length_So_Far 0 for the first AMP_ASSOC fragment, should be

incremented by the length of the previous

fragment for each call.

Max_Remote_AMP_ASSOC_Length Max length in octects allowed by host for

AMP_ASSOC.

AMP_ASSOC_Fragment_Buffer_Length Defines the size of the buffer that

AMP_ASSOC_FragmentResult points to. This

size MUST be at least:

HCI_AMP_ASSOC_FRAGMENT_SIZE_

MAXIMUM_FRAGMENT_SIZE

bytes long when the calculated remaining length

is greater than that value.

StatusResult If this function returns zero (success) then

variable pointed to by StatusResult will contain

the status result returned from the Bluetooth

device.

Physical_Link_HandleResult If this function returns zero (success) then

variable pointed to by this parameter will contain

the Physical Link Handle returned by the device.

AMP_ASSOC_Remaining_LengthResult If this function returns zero (success) then

variable pointed to by this parameter will contain

the length in octets of the remainder of

AMP_ASSOC structure including this fragment.

AMP_ASSOC_FragmentLengthResult If this function returns zero (success) then

variable pointed to by this parameter will contain

the AMP_ASSOC_FragmentLength returned

from the Bluetooth device.

AMP_ASSOC_FragmentResult If this function returns zero (success) then

variable pointed to by this parameter will contain

a fragment of the AMP_ASSOC structure.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 244 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Remote_AMP_ASSOC

Issues the HCI_Write_Remote_AMP_ASSOC command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack (which itself is specified with the

BluetoothStackID parameter). This command writes an AMP_ASSOC fragment to an

AMP Controller. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Write_Remote_AMP_ASSOC (unsigned int BluetoothStackID,

Byte_t Physical_Link_Handle, Word_t Length_So_Far,

Word_t AMP_ASSOC_Remaining_Length, Byte_t AMP_ASSOC_Fragment_Length,

Byte_t *AMP_ASSOC_Fragment, Byte_t *StatusResult,

Byte_t *Physical_Link_HandleResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

Physical_Link_Handle Handle of physical link that identifies the physical link

to be created with associated AMP_ASSOC.

Length_So_Far 0 for the first AMP_ASSOC fragment, should be

incremented by the length of the previous fragment for

each call.

AMP_ASSOC_Remaining_Length Length in octets of remainder of AMP_ASSOC

including this fragment.

AMP_ASSOC_Fragment_Length Size of buffer pointed to by AMP_ASSOC_Fragment.

This is the fragment size that will be written by this

command.

AMP_ASSOC_Fragment AMP_ASSOC fragment buffer that will be written by

this command.

StatusResult If this function returns zero (success) then variable

pointed to by StatusResult will contain the status result

returned from the Bluetooth device.

Physical_Link_HandleResult If this function returns zero (success) then variable

pointed to by this parameter will contain the Physical

Link Handle returned by the device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 245 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.7 Testing Commands

The Testing commands provide the ability to test various functions of the Bluetooth hardware.

These commands provide the ability to arrange various conditions for testing. The commands in

this section are listed in the table below.

Command Description

HCI_Read_Loopback_Mode Read the setting of the Host Controllers Loopback

Mode, which determines the path for information.

HCI_Write_Loopback_Mode Write the setting of the Host Controllers Loopback

Mode, which determines the path for information.

HCI_Enable_Device_Under_Test_Mode Instruct the local Bluetooth module to enter test

mode via LMP test commands. The Host issues

this command when it wants the local device to be

the DUT for the Testing scenarios as described in

the Bluetooth Test Mode document.

HCI_Write_Simple_Pairing_Debug_Mode

Instruct the local Bluetooth device to go into

Simple Pairing Debug mode.

HCI_Enable_AMP_Receiver_Reports Used to enable and disable reporting of frames

received.

HCI_AMP_Test_End Used to stop a test scenario in progress.

HCI_AMP_Test_Command Used to configure and start a test.

HCI_Read_Loopback_Mode

This command reads the setting of the Host Controller’s Loopback Mode, which

determines the path of information.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 246 of 737 January 10, 2014

Prototype:

int BTPSAPI HCI_Read_Loopback_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *Loopback_ModeResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Loopback_ModeResult Current setting of this parameter. Possible values are:

HCI_LOOPBACK_MODE_NO_LOOPBACK_MODE

HCI_LOOPBACK_MODE_ENABLE_LOCAL_LOOPBACK

HCI_LOOPBACK_MODE_ENABLE_REMOTE_LOOPBACK

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Loopback_Mode

This command reads the setting of the Host Controller’s Loopback Mode, which

determines the path of information. In Non-testing Mode operation, the Loopback Mode

is set to Non-testing Mode and the path of the information is as specified by the Bluetooth

specifications. In Local Loopback Mode, every Data Packet (ACL and SCO) and

Command Packet that is sent from the Host to the Host Controller is sent back with no

modifications by the Host Controller.

When the Bluetooth Host Controller enters Local Loopback Mode, it shall respond with

four Connection Complete events, one for an ACL channel and three for SCO channels, so

that the Host gets connection handles to use when sending ACL and SCO data. When in

Local Loopback Mode the Host Controller loops back commands and data to the Host.

The Loopback Command event is used to loop back commands that the Host sends to the

Host Controller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 247 of 737 January 10, 2014

If a device is set to Remote Loopback Mode, it will send back all data (ACL and SCO)

that comes over the air. In this mode it will only allow a maximum of one ACL

connection and three SCO connections – and these must be all to the same remote device.

Prototype:

int BTPSAPI HCI_Write_Loopback_Mode(unsigned int BluetoothStackID,

Byte_t Loopback_Mode, Byte_t *StatusResult)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Loopback_Mode Current setting of this parameter. Possible values are:

HCI_LOOPBACK_MODE_NO_LOOPBACK_MODE

HCI_LOOPBACK_MODE_ENABLE_LOCAL_LOOPBACK

HCI_LOOPBACK_MODE_ENABLE_REMOTE_LOOPBACK

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Enable_Device_Under_Test_Mode

This command allows the local Bluetooth module to enter test mode via LMP test

commands. The Host issues this command when it wants the local device to be the DUT

for the Testing scenarios. After receiving this command, the Host Controller functions as

normal until the remote tester issues the LMP test command to place the local device into

Device Under Test mode. To disable and exit the Device Under Test Mode, the Host can

issue the HCI_Reset command. This command prevents remote Bluetooth devices from

causing the local Bluetooth device to enter test mode without first issuing this command.

Prototype:

int BTPSAPI HCI_Enable_Device_Under_Test_Mode(unsigned int BluetoothStackID,

Byte_t *StatusResult)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 248 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult Returned HCI status code.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Write_Simple_Pairing_Debug_Mode

The following function issues the HCI_Write_Simple_Pairing_Debug_Mode Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This command configures the controller to use a predefined

Diffie Hellman private key for Simple Pairing debugging. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for

a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_Write_Simple_Pairing_Debug_Mode(unsigned int BluetoothStackID,

Byte_t Debug_Mode, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Debug_Mode Specifies whether to enable (0x01) or disable (0x00) Simple

Pairing debug mode.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 249 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Enable_AMP_Receiver_Reports

The following function issues the HCI_Enable_AMP_Receiver_Reports Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This function is used to enable and disable the reporting of

frames received. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth

device.

Prototype:

int BTPSAPI HCI_Enable_AMP_Receiver_Reports (unsigned int BluetoothStackID,

Byte_t Enable, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Enable Specifies whether to enable (0x01) or disable (0x00) the

reporting of frames sent.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 250 of 737 January 10, 2014

HCI_AMP_Test_End

The following function issues the HCI_AMP_Test_End Command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This function is used to stop any test scenario. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for

a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_AMP_Test_End (unsigned int BluetoothStackID, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etAMP_Test_End_Event

etAMP_Receiver_Report_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_AMP_Test_Command

The following function issues the HCI_AMP_Test_Command Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This function is used to start and configure a test. Note, this

function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_AMP_Test_Command (unsigned int BluetoothStackID,

Byte_t Parameter_Length, Byte_t Parameter_Data[], Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 251 of 737 January 10, 2014

Parameter_Length Number of bytes to send from buffer specified by

Parameter_Data parameter

Parameter_Data[] Byte buffer containing the bytes to be sent.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etAMP_Start_Test_Event

etAMP_Test_End_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.8 LE Controller Commands

These commands provide access and control over parts of the LE Bluetooth hardware. The

available commands are listed below.

Command Description

HCI_LE_Set_Event_Mask Determines which LE events are

generated by the host controller.

HCI_LE_Read_Buffer_Size Reads the maximum size of the data

portion of LE ACL Data Packets sent

from the host to the controller.

HCI_LE_Read_Local_Supported_Features Requests the list of the supported LE

features of the controller.

HCI_LE_Set_Random_Address Used by the host to set the LE

random device address to be used by

the controller.

HCI_LE_Set_Advertising_Parameters Informs controller of the advertising

parameters to utilize.

HCI_LE_Read_Advertising_Channel_Tx_Power Read the transmit power level for LE

advertising packets.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 252 of 737 January 10, 2014

Command Description

HCI_LE_Set_Advertising_Data Sets the data used in advertising

packets that have a data field.

HCI_LE_Set_Scan_Response Sets the data used in scanning

response packets that have a data

field.

HCI_LE_Set_Advertise_Enable Requests the controller to start or stop

advertising.

HCI_LE_Set_Scan_Parameters Sets the parameters to be used for

scanning.

HCI_LE_Set_Scan_Enable Used to start scanning and find

nearby advertising devices.

HCI_LE_Create_Connection Creates an LE link layer connection

to a connectable advertiser.

HCI_LE_Create_Connection_Cancel Cancels a currently on-going LE

connection attempt.

HCI_LE_Read_White_List_Size Reads total number of entries that can

be stored in the white list of the

controller.

HCI_LE_Clear_White_List Clears the white list stored in the

controller.

HCI_LE_Add_Device_To_White_List Adds a single device to the white list.

HCI_LE_Remove_Device_From_White_List Removes devices from the white list.

HCI_LE_Connection_Update Used to change the link layer

connection parameters of a current

connection.

HCI_LE_Set_Host_Channel_Classification Specifies a channel classification for

the data channels to be used.

HCI_LE_Read_Channel_Map Returns the channel map for a

specified connection.

HCI_LE_Read_Remote_Used_Features Requests a list of the LE features

from a remote device.

HCI_LE_Encrypt Request the controller to encrypt the

specified plain-text data.

HCI_LE_Rand Requests the controller to generate an

8 octet random number.

HCI_LE_Start_Encryption Starts encryption on a currently

authenticated connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 253 of 737 January 10, 2014

Command Description

HCI_LE_Long_Term_Key_Request_Reply Reply to a LE Long Term Key

Request event from the controller.

HCI_LE_Long_Term_Key_Requested_Negative_Reply Negative Reply to an LE Long Term

Key Request event from the

controller.

HCI_LE_Read_Supported_States Reads the states and state

combinations that the local link layer

supports.

HCI_LE_Reciever_Test Start a test where the the local

controller is put into a mode to

receive reference packets.

HCI_LE_Transmitter_Test Start a test where the local controller

generates test reference packets at a

fixed interval.

HCI_LE_Test_End Stop any test which is in currently in

progress.

HCI_LE_Set_Event_Mask

The following function issues the HCI_LE_Set_Event_Mask Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter followed by the LE Event Mask to set. This function is used to control which LE

events are generated by the controller for the host. Note, this function blocks until either a

result is returned from the Bluetooth device OR the function times out waiting for a response

from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Event_Mask(unsigned int BluetoothStackID,

Event_Mask_t LE_Event_Mask, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LE_Event_Mask Event mask to set for the Host. The bit mask is constructed via

the following API macros:

 SET_EVENT_MASK_BIT(Mask, BitNumber)

 RESET_EVENT_MASK_BIT(Mask, BitNumber)

 TEST_EVENT_MASK_BIT(Mask, BitNumber)

HCI_ENABLE_ALL_LE_EVENTS_IN_EVENT_MASK(Mask)

HCI_DISABLE_ALL_LE_EVENTS_IN_EVENT_MASK(Mask)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 254 of 737 January 10, 2014

The bit number constants defined in the API for use with these

macros are:

HCI_LE_EVENT_MASK_CONNECTION_COMPLETE_

BIT_NUMBER

HCI_LE_EVENT_MASK_ADVERTISING_REPORT_BIT_

NUMBER

HCI_LE_EVENT_MASK_CONNECTION_UPDATE_

COMPLETE_BIT_NUMBER

HCI_LE_EVENT_MASK_READ_REMOTE_USED_

FEATURES_COMPLETE_BIT_NUMBER

HCI_LE_EVENT_MASK_LONG_TERM_KEY_REQUEST_

BIT_NUMBER

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Read_Buffer_Size

The following function issues the HCI_LE_Read_Buffer_Size Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It returns the maximum size of the data field of an LE ACL packet as well as the

maximum number of packets the controller can hold. Note, this function blocks until either a

result is returned from the Bluetooth device OR the function times out waiting for a response

from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Buffer_Size(unsigned int BluetoothStackID,

Byte_t *StatusResult, Word_t *HC_LE_ACL_Data_Packet_Length,

Byte_t *HC_Total_Num_LE_ACL_Data_Packets);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth

Protocol Stack via a call to BSC_Initialize,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 255 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable

will contain the Status Result returned from the

Bluetooth device.

HC_LE_ACL_Data_Packet_Length Contains the returned maximum length of ACL

data packet.

HC_Total_Num_LE_ACL_Data_Packets Contains the returned total number of data

packets the can be stored in the buffers.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Read_Local_Supported_Features

The following function issues the HCI_LE_Read_Local_Supported_Features Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It fetches a list of LE features that a device supports. Note, this

function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Local_Supported_Features(unsigned int BluetoothStackID,

Byte_t *StatusResult, LE_Features_t *LE_FeaturesResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

LE_FeaturesResult Bit mask list of supported features. Defined bit numbers which

are applicable to this function:

HCI_LE_FEATURE_LE_ENCRYPTION_BIT_NUMBER

Useful macros defined for manipulation of LE Features are:

COMPARE_LE_FEATURES(feats1, feats2)

ASSIGN_LE_FEATURES(feats, MSByte, … LSByte)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 256 of 737 January 10, 2014

SET_FEATURES_BIT(feats, bitnumb)

RESET_FEATURES_BIT(feats, bitnum)

TEST_FEATURES_BIT(feats, bitnum)

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Random_Address

The following function issues the HCI_LE_Set_Random_Address Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It allows a host to set the random device address in the Controller. Note, this

function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Random_Address(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Random address to use.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 257 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Advertising_Parameters

The following function issues the HCI_LE_Set_Advertising_Parameters Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This allows the host to set the parameters that determine how

the controller advertises. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Advertising_Parameters(unsigned int BluetoothStackID,

Word_t Advertising_Interval_Min, Word_t Advertising_Interval_Max,

Byte_t Advertising_Type, Byte_t Own_Address_Type, Byte_t Direct_Address_Type,

BD_ADDR_t Direct_Address, Byte_t Advertising_Channel_Map,

Byte_t Advertising_Filter_Policy, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Advertising_Interval_Min Mininum interval to advertise. Should be in terms of baseband

slots (0.625 msec) and should be in the range:

 HCI_LE_ADVERTISING_INTERVAL_MINIMUM

HCI_LE_ADVERTISING_INTERVAL_MAXIMUM

Advertising_Interval_Max Maximum interval to advertise. Should be greater than or equal

to Advertising_Interval_Min, should be in terms of baseband

slots (0.625msec), and should be in the range:

 HCI_LE_ADVERTISING_INTERVAL_MINIMUM

HCI_LE_ADVERTISING_INTERVAL_MAXIMUM

Both intervals follow the rule:

Time = N * 0.625msec

Advertising_Type Type of advertising to use. Possible values are:

HCI_LE_ADVERTISING_TYPE_CONNECTABLE_

UNDIRECTED

HCI_LE_ADVERTISING_TYPE_CONNECTABLE_

DIRECTED

HCI_LE_ADVERTISING_TYPE_SCANNABLE_

UNDIRECTED

HCI_LE_ADVERTISING_TYPE_NON_CONNECTABLE_

UNDIRECTED

Own_Address_Type Address type of local device’s address. Possible values are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 258 of 737 January 10, 2014

HCI_LE_ADDRESS_TYPE_PUBLIC
HCI_LE_ADDRESS_TYPE_RANDOM

Direct_Address_Type Address type of directed address (if directed advertising).

Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Direct_Address Address of directed device (if directed advertising).

Advertising_Channel_Map Indicates which advertising channels to use. Possible values

include one or more of the following bit-mask values:

HCI_LE_ADVERTISING_CHANNEL_MAP_ENABLE_

CHANNEL_37

HCI_LE_ADVERTISING_CHANNEL_MAP_ENABLE_

CHANNEL_38

HCI_LE_ADVERTISING_CHANNEL_MAP_ENABLE_

CHANNEL_39

Additionally, the following constant can be used to specify all

Advertising channels:

HCI_LE_ADVERTISING_CHANNEL_MAP_ENABLE_

ALL_CHANNELS

Advertising_Filter_Policy Policy of which devices to allow requests from. Possible values

are:

HCI_LE_ADVERTISING_FILTER_POLICY_SCAN_

ANY_CONNECT_ANY

HCI_LE_ADVERTISING_FILTER_POLICY_SCAN_

WHITE_LIST_CONNECT_ANY

HCI_LE_ADVERTISING_FILTER_POLICY_SCAN_

ANY_CONNECT_WHITE_LIST

HCI_LE_ADVERTISING_FILTER_POLICY_SCAN_

WHITE_LIST_CONNECT_WHITE_LIST

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 259 of 737 January 10, 2014

HCI_LE_Read_Advertising_Channel_Tx_Power

The following function issues the HCI_LE_Read_Advertising_Channel_Tx_Power Command

to the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It allows the host to read the power level that is used for the

transmission of advertising packets. Note, this function blocks until either a result is returned

from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Advertising_Channel_Tx_Power(

unsigned int BluetoothStackID, Byte_t *StatusResult,

Byte_t *Transmit_Power_LevelResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain

the Status Result returned from the Bluetooth device.

Transmit_Power_LevelResult Contains the returned transmit power level.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Advertising Data

The following function issues the HCI_LE_Set_Advertising_Data to the Bluetooth device that

is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID parameter.

Allows a device to set the data it transmits in advertising packets that allows data. Note, this

function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Advertising_Data(unsigned int BluetoothStackID,

Byte_t Advertising_Data_Length, Advertising_Data_t *Advertising_Data,

Byte_t *StatusResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 260 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Advertising_Data_Length Length of advertising data.

Advertising_Data Actual advertising data.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Scan_Response_Data

The following function issues the HCI_LE_Set_Scan_Response_Data Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It allows a device to specify the data used in scanning packet

responses that allow data. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Scan_Response_Data(unsigned int BluetoothStackID,

Byte_t Scan_Response_Data_Length, Scan_Response_Data_t *Scan_Response_Data,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

Scan_Response_Data_Length Length of scan response data.

Scan_Response_Data Actual scan response data.

StatusResult If function returns zero (success) this variable will contain

the Status Result returned from the Bluetooth device.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 261 of 737 January 10, 2014

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Advertise_Enable

The following function issues the HCI_LE_Set_Advertise_Enable Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It allows a device the ability to enable/disable advertising. Note, this function

blocks until either a result is returned from the Bluetooth device OR the function times out

waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Advertise_Enable(unsigned int BluetoothStackID,

Byte_t Advertising_Enable, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Advertising_Enable Desired value to set. Possible values are:

HCI_LE_ADVERTISING_DISABLE

HCI_LE_ ADVERTISING_ENABLE

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 262 of 737 January 10, 2014

HCI_LE_Set_Scan_Parameters

The following function issues the HCI_LE_Set_Scan_Parameters Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This function returns zero if successfull, or a non-zero value if there was an error.

If this function returns zero (success) then the StatusResult variable will contain the Status

Result returned from the Bluetooth device. Note, this function blocks until either a result is

returned from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Scan_Parameters(unsigned int BluetoothStackID,

Byte_t LE_Scan_Type, Word_t LE_Scan_Interval, Word_t LE_Scan_Window,

Byte_t Own_Address_Type, Byte_t Scanning_Filter_Policy, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LE_Scan_Type Type of scan to perform. Possible values are:

HCI_LE_SCAN_TYPE_PASSIVE

HCI_LE_SCAN_TYPE_ACTIVE

LE_Scan_Interval Interval to set between LE scans. Defined as number of

baseband slots (0.625 msec). Should be within the range:

HCI_LE_SCAN_INTERVAL_MINIMUM to

HCI_LE_SCAN_INTERVAL_MAXIMUM

LE_Scan_Window Value to set duration of an LE scan. Should be defined as

number of baseband slots (00625msec), less than or equal to

scan window, and within the range as scan window.

Both intervals follow the rule:

Time = N * 0.625msec

Own_Address_Type Type of local device’s address. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Scanning_Filter_Policy Determines which advertising packets to accept. Possible values

are:

HCI_SCANNING_FILTER_POLICY_ACCEPT_ALL

HCI_SCANNING_FILTER_POLICY_ACCEPT_

WHITE_LIST_ONLY

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 263 of 737 January 10, 2014

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Scan_Enable

The following function issues the HCI_LE_Set_Scan_Enable Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It allows a device to enable or disable scanning for advertisering devices. Note,

this function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Scan_Enable(unsigned int BluetoothStackID,

Byte_t LE_Scan_Enable, Byte_t Filter_Duplicates, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

LE_Scan_Enable Enable or disable scanning. Possible values are:

HCI_LE_SCAN_ENABLE

HCI_LE_SCAN_DISABLE

Filter_Duplicates Specifies whether duplicate reports should be filtered out.

Possible values are:

HCI_LE_SCAN_FILTER_DUPLICATES_DISABLED

HCI_LE_SCAN_FILTER_DUPLICATES_ENABLED

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 264 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Create_Connection

The following function issues the HCI_LE_Create_Connection Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It allows a device to open a connection to a connectable advertising device. Note,

this function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Create_Connection(unsigned int BluetoothStackID,

Word_t LE_Scan_Interval, Word_t LE_Scan_Window, Byte_t Initiator_Filter_Policy,

Byte_t Peer_Address_Type, BD_ADDR_t Peer_Address, Byte_t Own_Address_Type,

Word_t Conn_Interval_Min, Word_t Conn_Interval_Max, Word_t Conn_Latency,

Word_t Supervision_Timeout, Word_t Minimum_CE_Length,

Word_t Maximum_CE_Length, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LE_Scan_Interval Interval to delay between LE scans. Defined as number of

baseband slots (0.625 msec). Should be within the range:

HCI_LE_SCAN_INTERVAL_MINIMUM to

HCI_LE_SCAN_INTERVAL_MAXIMUM

LE_Scan_Window Value to use for the duration of an LE scan. Should be defined

as number of baseband slots (0.625 msec), less than or equal to

scan window, and within the range as scan window.

Initiator_Filter_Policy Determines whether to use a white list. Possible values are:

HCI_LE_INITIATOR_FILTER_POLICY_WHITE_LIST_

NOT_USED

HCI_LE_INITIATOR_FILTER_POLICY_WHITE_LIST_

IS_USED

Peer_Address_Type Type of peer address. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Peer_Address Address of advertiser to connect if white list is not enabled.

Own_Address_Type Type of local device address. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 265 of 737 January 10, 2014

Conn_Interval_Min Minimum value for the the connection interval. This should fall

within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Conn_Interval_Max This should be greater than or equal to Conn_Interval_Min and

shall fall within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Both intervals follow the rule:

Time = N * 1.25 msec

Conn_Latency Slave latency for connection. This should be in range:

HCI_LE_CONNECTION_LATENCY_MINIMUM

HCI_LE_CONNECTION_LATENCY_MAXIMUM

Supervision_Timeout Supervision timeout for LE link. This should be in range:

HCI_LE_SUPERVISION_TIMEOUT_MINIMUM

HCI_LE_SUPERVISION_TIMEOUT_MAXIMUM

 The Supervision_Timeout follows the rule:

Time = N * 10 msec

Minimum_CE_Length Information about minimum length of LE connection. This

should be in range:

HCI_LE_LENGTH_OF_CONNECTION_MINIMUM

HCI_LE_LENGTH_OF_CONNECTION_MAXIMUM

Maximum_CE_Length Information about maximum length of LE connection. Should

be in range

HCI_LE_LENGTH_OF_CONNECTION_MINIMUM

HCI_LE_LENGTH_OF_CONNECTION_MAXIMUM

Both CE_Lengths follow the rule:

Time = N * 0.625 msec

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

me_Connection_Complete_Event

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 266 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Create_Connection_Cancel

The following function issues the HCI_LE_Create_Connection_Cancel Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It cancels a currently executing HCI_LE_Create_Connection

procedure. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Create_Connection_Cancel(unsigned int BluetoothStackID,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 267 of 737 January 10, 2014

HCI_LE_Read_White_List_Size

The following function issues the HCI_LE_Read_White_List_Size Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It allows a device to read the total number of devices stored in

the white list on the local controller. Note, this function blocks until either a result is returned

from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_White_List_Size(unsigned int BluetoothStackID,

Byte_t *StatusResult, Byte_t *White_List_SizeResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

White_List_SizeResult Contains the returned size of the white list (specified in number

of devices).

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Clear_White_List

The following function issues the HCI_LE_Clear_White_List Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It clears the white list stored on the Controller. Note, this function blocks until

either a result is returned from the Bluetooth device OR the function times out waiting for a

response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Clear_White_List(unsigned int BluetoothStackID,

Byte_t *StatusResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 268 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Add_Device_To_White_List

The following function issues the HCI_LE_Add_Device_To_White_List Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It adds a device to the white list stored on the controller. Note,

this function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Add_Device_To_White_List(unsigned int BluetoothStackID, Byte_t

Address_Type, BD_ADDR_t Address, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Address_Type Type of address being added. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Address Address to of device to add to the white list.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 269 of 737 January 10, 2014

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Remove-Device_From_White_List

The following function issues the HCI_LE_Remove_Device_From_White_List Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This command removes a device from the white list stored on

the controller. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Remove_Device_From_White_List(

unsigned int BluetoothStackID, Byte_t Address_Type, BD_ADDR_t Address,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Address_Type Type of address being added. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Address Address to of device to remove from the white list.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 270 of 737 January 10, 2014

HCI_LE_Connection_Update

The following function issues the HCI_LE_Connection_Update Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This command allows the changing of the link layer LE connection parameters

between two currently connected Bluetooth LE devices. Note, this function blocks until either

a result is returned from the Bluetooth device OR the function times out waiting for a

response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Connection_Update(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Conn_Interval_Min, Word_t Conn_Interval_Max,

Word_t Conn_Latency, Word_t Supervision_Timeout, Word_t Minimum_CE_Length,

Word_t Maximum_CE_Length, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle to the connection desired to be updated.

Conn_Interval_Min Minimum value for the the connection interval. This should fall

within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Conn_Interval_Max This should be greater than or equal to Conn_Interval_Min and

shall fall within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Both intervals follow the rule:

Time = N * 1.25 msec

Conn_Latency Slave latency for connection. This should be in range:

HCI_LE_CONNECTION_LATENCY_MINIMUM

HCI_LE_CONNECTION_LATENCY_MAXIMUM

Supervision_Timeout Supervision timeout for LE link. This should be in range:

HCI_LE_SUPERVISION_TIMEOUT_MINIMUM

HCI_LE_SUPERVISION_TIMEOUT_MAXIMUM

 The Supervision_Timeout follows the rule:

Time = N * 10 msec

Minimum_CE_Length Information about minimum length of LE connection. This

should be in range:

HCI_LE_LENGTH_OF_CONNECTION_MINIMUM

HCI_LE_LENGTH_OF_CONNECTION_MAXIMUM

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 271 of 737 January 10, 2014

Maximum_CE_Length Information about maximum length of LE connection. Should

be in range

HCI_LE_LENGTH_OF_CONNECTION_MINIMUM

HCI_LE_LENGTH_OF_CONNECTION_MAXIMUM

Both CE_Lengths follow the rule:

Time = N * 0.625 msec

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

me_Connection_Update_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Set_Host_Channel_Classifaction

The following function issues the HCI_LE_Set_Host_Channel_Classification Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. It allows a host to specify a channel classification for data

channels. Note, this function blocks until either a result is returned from the Bluetooth device

OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Set_Host_Channel_Classification(unsignedint BluetoothStackID,

LE_Channel_Map_t Channel_Map, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Channel_Map New channel map to set. It is a 37-bit field where the n
th

 bit

represents channel index n. A value of 0 represents the channel

is bad (not used). A value of 1 represents the channel is

unkown. At least one channel should be marked as unkown.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 272 of 737 January 10, 2014

Useful macros defined for manipulation of LE Channel Maps

are:

COMPARE_LE_CHANNEL_MAP(map1, map2)

ASSIGN_LE_CHANNEL_MAP(map, MSByte, …, LSByte)

SET_LE_CHANNEL_MAP_CHANNEL(map, channum)

RESET_LE_CHANNEL_MAP_CHANNEL(map, channum)

TEST_LE_CHANNEL_MAP_CHANNEL(map, channum)

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Read_Channel_Map

The following function issues the HCI_LE_Read_Channel_Map Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. It allows a device to obtain the channel map used for a specified connection.

Note, this function blocks until either a result is returned from the Bluetooth device OR the

function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Channel_Map(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult, Word_t *Connection_HandleResult,

LE_Channel_Map_t *Channel_MapResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle that identifies the desired connection.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Connection_HandleResult Connection handle returned from Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 273 of 737 January 10, 2014

Channel_MapResult Returned channel map. It is a 37-bit field where the n
th

 bit

represents channel index n. A value of 0 represents the channel

is bad (not used). A value of 1 represents the channel is

unkown.

Useful macros defined for manipulation of LE Channel Maps

are:

COMPARE_LE_CHANNEL_MAP(map1, map2)

ASSIGN_LE_CHANNEL_MAP(map, MSByte, …, LSByte)

SET_LE_CHANNEL_MAP_CHANNEL(map, channum)

RESET_LE_CHANNEL_MAP_CHANNEL(map, channum)

TEST_LE_CHANNEL_MAP_CHANNEL(map, channum)

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Read_Remote_Used_Features

The following function issues the HCI_LE_Read_Remote_Used_Features Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This function allows a device to determine the LE features

being used by a remote device. The results will be returned in a

meRead_Remote_Used_Features_Complete_Event. Note, this function blocks until either a result

is returned from the Bluetooth device OR the function times out waiting for a response from

the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Remote_Used_Features(unsigned int BluetoothStackID,

Word_t Connection_Handle, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle that identifies the desired connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 274 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

meRead_Remove_Used_Features_Complete_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Encrypt

The following function issues the HCI_LE_Encrypt Command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID parameter.

This function allows a device to encrypt plain text data with a specified key. Note, this

function blocks until either a result is returned from the Bluetooth device OR the function

times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Encrypt(unsigned int BluetoothStackID, Encryption_Key_t Key,

Plain_Text_Data_t Plain_Text_Data, Byte_t *StatusResult,

Encrypted_Data_t *Encrypted_DataResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Key 128 bit encryption key.

Plain_Text_Data 128 bit data block to be encrypted.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Encrypted_DataResult 128 bit encrypted data block.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 275 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Rand

The following function issues the HCI_LE_Rand Command to the Bluetooth device that is

associated with the Bluetooth Protocol Stack specified by the BluetoothStackID parameter.

This allows the host to request 64 bits of randomly generated data (e.g. a 64 bit random

number). Note, this function blocks until either a result is returned from the Bluetooth device

OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Rand(unsigned int BluetoothStackID, Byte_t *StatusResult,

Random_Number_t *Random_NumberResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Random_NumberResult 64-bit random number generated from the controller.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Start_Encryption

The following function issues the HCI_LE_Start_Encryption Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This function is used to authenticate the encryption key associated with the given

connection. Once authenticated, it will encrypt, or re-encrypt if already encrypted, the link.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 276 of 737 January 10, 2014

Note, this function blocks until either a result is returned from the Bluetooth device OR the

function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Start_Encryption(unsigned int BluetoothStackID,

Word_t Connection_Handle, Random_Number_t Random_Number,

Word_t Encrypted_Diversifier, Long_Term_Key_t Long_Term_Key,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle used to identify the desired connection.

Random_Number 64 bit random number to use during the encryption process.

Encrypted_Diversifier 16-bit encrypted diversifier.

Long_Term_Key 128-bit long term key.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Possible Events:

etEncyrption_Key_Refresh_Complete_Event

etEncryption_Change_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 277 of 737 January 10, 2014

HCI_LE_Long_Term_Key_Request_Reply

The following function issues the HCI_LE_Long_Term_Key_Request_Reply Command to

the Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This command is used in response to a

meLong_Term_Key_Request_Event. Note, this function blocks until either a result is returned

from the Bluetooth device OR the function times out waiting for a response from the

Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Long_Term_Key_Request_Reply(unsigned intBluetoothStackID,

Word_t Connection_Handle, Long_Term_Key_t Long_Term_Key, Byte_t *StatusResult,

Word_t *Connection_HandleResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle used ot identify the desired connection.

Long_Term_Key 128-bit long term key.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Connection_HandleResult Returned connection handle.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 278 of 737 January 10, 2014

HCI_LE_Long_Term_Key_Request_Negative_Key_Reply

The following function issues the HCI_LE_Long_Term_Key_Request_Negative_Reply

Command to the Bluetooth device that is associated with the Bluetooth Protocol Stack

specified by the BluetoothStackID parameter. This function is used in reply to a

meLong_Term_Key_Request_Event if the host cannot (or does not want to) provide a long term

key for this connection. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Long_Term_Key_Request_Negative_Reply(

unsigned int BluetoothStackID, Word_t Connection_Handle, Byte_t *StatusResult,

Word_t *Connection_HandleResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Connection_Handle Handle used to identify the desired connection.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Connection_HandleResult Returned connection handle.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Read_Supported_States

The following function issues the HCI_LE_Read_Supported_States Command to the

Bluetooth device that is associated with the Bluetooth Protocol Stack specified by the

BluetoothStackID parameter. This function reads the supported channels and combinations

that the link layer supports. Note, this function blocks until either a result is returned from the

Bluetooth device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Read_Supported_States(unsigned int BluetoothStackID,

Byte_t *StatusResult, LE_States_t *LE_StatesResult);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 279 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

LE_StatesResult Returned supported LE states. These states are represented as a

bit mask. The following macro’s can be used to manipulate the

LE states mask.:

ASSIGN_LE_STATES(Mask, MSByte, …, LSByte)

COMPARE_LE_STATES(Mask1, Mask2)

 SET_LE_STATES_BIT (Mask, BitNumber)

 RESET_LE_STATES_BIT (Mask, BitNumber)

 TEST_LE_STATES_BIT(Mask, BitNumber)

The bit number constants defined in the API for use with these

macros are:

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_SCANNABLE_ADVERTISING_STATE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_CONNECTABLE_ADVERTISING_STATE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_DIRECTED_ADVERTISING_STATE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_PASSIVE_SCANNING_STATE_SUPPORTE

D_BIT_NUMBER

HCI_LE_STATES_ACTIVE_SCANNING_STATE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_INITIATING_STATE_MASTER_ROLE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_CONNECTION_STATE_SLAVE_ROLE_

SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

PASSIVE_SCANNING_STATE_SUPPORTED_BIT_

NUMBER

HCI_LE_STATES_SCANNABLE_ADVERTISING_PASSIVE_

SCANNING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_CONNECTABLE_ADVERTISING_

PASSIVE_SCANNING_STATE_SUPPORTED_BIT_

NUMBER

HCI_LE_STATES_DIRECTED_ADVERTISING_PASSIVE_

SCANNING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

ACTIVE_SCANNING_STATE_SUPPORTED_BIT_

NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 280 of 737 January 10, 2014

HCI_LE_STATES_SCANNABLE_ADVERTISING_ACTIVE_

SCANNING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_CONNECTABLE_ADVERTISING_

ACTIVE_SCANNING_STATE_SUPPORTED_BIT_

NUMBER

HCI_LE_STATES_DIRECTED_ADVERTISING_ACTIVE_

SCANNING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

INITIATING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_SCANNABLE_ADVERTISING_

INITIATING_STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

STATE_MASTER_ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_SCANNABLE_ADVERTISING_STATE_

MASTER_ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_NON_CONNECTABLE_ADVERTISING_

STATE_SLAVE_ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_SCANNABLE_ADVERTISING_STATE_

SLAVE_ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_PASSIVE_SCANNING_INITITIATING_

STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_ACTIVE_SCANNING_INITITIATING_

STATE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_PASSIVE_SCANNING_STATE_MASTER_

ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_ACTIVE_SCANNING_STATE_MASTER_

ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_PASSIVE_SCANNING_STATE_SLAVE_

ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_ACTIVE_SCANNING_STATE_SLAVE_

ROLE_SUPPORTED_BIT_NUMBER

HCI_LE_STATES_INITIATING_STATE_MASTER_ROLE_

MASTER_ROLE_MASTER_ROLE_SUPPORTED_BIT_

NUMBER

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 281 of 737 January 10, 2014

HCI_LE_Receiver_Test_Command

The following function issues the HCI_LE_Receiver_Test Command to the Bluetooth device

that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This function starts a test in which the the local device receives packets at a fixed

interval. Note, this function blocks until either a result is returned from the Bluetooth device

OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Receiver_Test(unsigned int BluetoothStackID,

Byte_t RX_Frequency, Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

RX_Frequency Frequency to receive packets, Where N (RX_Frequency) = (F -

2402) / 2. This value should be in the range:

HCI_LE_RECEIVER_TRANSMITTER_TEST_

FREQUENCY_MINIMUM

HCI_LE_RECEIVER_TRANSMITTER_TEST_

FREQUENCY_MAXIMUM

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device,

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 282 of 737 January 10, 2014

HCI_LE_Transmitter_Test

The following function issues the HCI_LE_Transmitter_Test Command to the Bluetooth

device that is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID

parameter. This command runs a test in which the local device transmits test packets at a

fixed interval. Note, this function blocks until either a result is returned from the Bluetooth

device OR the function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Transmitter_Test(unsigned int BluetoothStackID,

Byte_t TX_Frequency, Byte_t Length_Of_Test_Data, Byte_t Packet_Payload,

Byte_t *StatusResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TX_Frequency Frequency to receive packets, Where N(TX_Frequency) = (F -

2402) / 2. This value should be in the range:

HCI_LE_RECEIVER_TRANSMITTER_TEST_

FREQUENCY_MINIMUM

HCI_LE_RECEIVER_TRANSMITTER_TEST_

FREQUENCY_MAXIMUM

Length_Of_Test_Data Length in bytes of payload data in each packet. This value

should be in the range:

HCI_LE_TRANSMITTER_TEST_LENGTH_OF_TEST_

DATA_MINIMUM_LENGTH

HCI_LE_TRANSMITTER_TEST_LENGTH_OF_TEST_

DATA_MAXIMUM_LENGTH

Packet_Payload Description of the transmitted test pattern. The possible values

are:

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PSEUDO_

RANDOM_BIT_SEQUENCE_9

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALTERNATING_BITS_0xF0

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALTERNATING_BITS_0xAA

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PSEUDO_

RANDOM_BIT_SEQUENCE_15

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALL_1_BITS

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALL_0_BITS

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALTERNATING_BITS_0x0F

HCI_LE_TRANSMITTER_TEST_PAYLOAD_PATTERN_

ALTERNATING_BITS_0x55

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 283 of 737 January 10, 2014

StatusResult If function returns zero (success) this variable will contain the

Status Result returned from the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_LE_Test_End

The following function issues the HCI_LE_Test_End Command to the Bluetooth device that

is associated with the Bluetooth Protocol Stack specified by the BluetoothStackID parameter.

Note, this function blocks until either a result is returned from the Bluetooth device OR the

function times out waiting for a response from the Bluetooth device.

Prototype:

int BTPSAPI HCI_LE_Test_End(unsigned int BluetoothStackID, Byte_t *StatusResult,

Word_t *Number_Of_PacketsResult);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Number_Of_PacketsResult Number of packets received (0x0000 for a transmitter test).

Return:

Zero if successful.

An error code if negative; one of the following values:

 BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 284 of 737 January 10, 2014

2.2.9 Miscellaneous Commands/Parameters

These are commands and parameters which are not called out in the Bluetooth specifications, but

are needed to facilitate operation of the Bluetooth Protocol Stack. The commands in this section

are listed in the table below.

Command Description

HCI_Version_Supported Read the HCI version supported by the HCI API layer.

HCI_Command_Supported Allows caller mechanism to determine if a specific HCI

function is supported by the HCI API layer present for

specified Bluetooth protocol stack.

HCI_Send_Raw_Command Issue a raw HCI command to the specified Bluetooth

device.

HCI_Send_ACL_Data Send HCI ACL packets to a Bluetooth device.

HCI_Send_SCO_Data Send HCI SCO packets to a Bluetooth device.

HCI_Change_SCO_Configuration Set SCO data delivery via HCI channel enabled or

disabled.

HCI_Reconfigure_Driver Request HCI Driver reconfiguration process.

HCI_Set_Host_Flow_Control Configures the Controller to Host Flow Control

configuration.

HCI_Query_Host_Flow_Control Queries the Controller to Host Flow Control configuration.

HCI_Version_Supported

This command reads the HCI version which is supported by the HCI API layer.

Prototype:

int BTPSAPI HCI_Version_Supported(unsigned int BluetoothStackID,

HCI_Version_t *HCI_Version);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

HCI_Version A returned enumerated type, where higher levels of Bluetooth

specification revised are assured of having a higher ordinal

value in the enumeration. Possible values are:

hvSpecification_1_0B

hvSpecification_1_1

hvSpecification_1_2

hvSpecification_2_0

hvSpecification_2_1

hvSpecification_3_0

hvSpecification_4_0

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 285 of 737 January 10, 2014

which represent ver 1.0B, ver 1.1, ver 1.2, ver 2.0, ver 2.1, ver

3.0, and ver 4.0 of the Bluetooth specification, respectively.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Command_Supported

This function allows the caller to determine if a specified HCI function is present in the HCI

API layer of a specified Bluetooth protocol stack. This function should be used instead of

making a call to HCI_Read_Local_Supported_Commands.

Prototype:

int BTPSAPI HCI_Command_Supported(unsigned int BluetoothStackID,

unsigned int SupportedCommandBitNumber);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

SupportedCommandBitNumber Supported HCI Command bit number (defined in

HCITypes.h) for the specified HCI command that is to be

tested. See description of

HCI_Read_Local_Supported_Commands() function for

more information on this parameter.

Return:

Positive, non-zero, value if the HCI command is supported.

Zero if the HCI command is NOT supported.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 286 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Send_Raw_Command

Issue a raw HCI command to the specified Bluetooth device.

Prototype:

int BTPSAPI HCI_Send_Raw_Command(unsigned int BluetoothStackID,

Byte_t Command_OGF, Word_t Command_OCF, Byte_t Command_Length,

Byte_t Command_Data[], Byte_t *StatusResult, Byte_t *LengthResult,

Byte_t *BufferResult, Boolean_t WaitForResponse);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Command_OGF Opcode Group Field value – upper 6 bits of the opcode field

(e.g., 0x01 for Link Control commands).

Command_OCF Opcode Command Field value – lower 10 bits of opcode.

Command_Length Length of the valid data in Command_Data.

Command_Data Array of bytes that make up the command

StatusResult Pointer to a byte to receive a returned status.

LengthResult This parameter is both an input and output parameter. On input

this parameter should contain the total length (in bytes) of the

buffer that is pointed to by the BufferResult parameter. On

successful return from this function this will contain the length

of the valid data returned in the BufferResult.

BufferResult Pointer to an array of bytes for the command result.

WaitForResponse TRUE if the function should wait for the result, FALSE

otherwise.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 287 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Send_ACL_Data

Send HCI ACL data packets to a Bluetooth device. Caller is not responsible for

formatting an HCI ACL data packet, this is handled by the API.

Prototype:

int BTPSAPI HCI_Send_ACL_Data(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Flags, Word_t ACLDataLength, Byte_t *ACLData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags Used along with the connection_Handle to define the header of

the HCI ACL Data Packet. Possible values are:

Bluetooth Version 1.1

HCI_ACL_FLAGS_PACKET_BOUNDARY_CONTINUE_

PACKET

HCI_ACL_FLAGS_PACKET_BOUNDARY_FIRST_PACKET

HCI_ACL_FLAGS_PACKET_BOUNDARY_FIRST_

PACKET_AUTO_FLUSHABLE

Bluetooth Version 2.1

HCI_ACL_FLAGS_PACKET_BOUNDARY_FIRST_PACKET_

NON_FLUSHABLE

HCI_ACL_FLAGS_PACKET_BOUNDARY_COMPLETE_

L2CAP_PDU_AUTO_FLUSHABLE

These definitions are for Packets from Host to Host Controller.

Bluetooth Version 1.1

HCI_ACL_FLAGS_PACKET_BROADCAST_NO_BROADCAST

HCI_ACL_FLAGS_PACKET_BROADCAST_ACTIVE_BROADCAST

HCI_ACL_FLAGS_PACKET_BROADCAST_PICONET_BROADCAST

Bluetooth Version 1.2

HCI_ACL_FLAGS_PACKET_BROADCAST_ACTIVE_SLAVE_

BROADCAST

HCI_ACL_FLAGS_PACKET_BROADCAST_PARKED_SLAVE_

BROADCAST

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 288 of 737 January 10, 2014

These definitions are for Packets from Host Controller to Host.

HCI_ACL_FLAGS_PACKET_BROADCAST_POINT_TO_POINT

HCI_ACL_FLAGS_PACKET_BROADCAST_ACTIVE_SLAVE

HCI_ACL_FLAGS_PACKET_BROADCAST_PARKED_SLAVE

ACLDataLength Length of the data pointed to by ACLData

ACLData Pointer to the data to be sent.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Send_SCO_Data

Send HCI SCO data packets to a Bluetooth device. Caller is not responsible for

formatting an HCI SCO/eSCO data packet, this is handled by the API.

Prototype:

int BTPSAPI HCI_Send_SCO_Data(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Flags, Word_t SCODataLength, Byte_t *SCOData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags Currently not used. Set to zero.

SCODataLength Length of the data pointed to by SCOData

SCOData Pointer to the data to be sent.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 289 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_HCI_DRIVER_ERROR

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Change_SCO_Configuration

This function issues the appropriate call to an HCI driver to set SCO data delivery via the

HCI channel to be enabled or disabled.

Prototype:

int BTPSAPI HCI_Change_SCO_Configuration(unsigned int BluetoothStackID,

HCI_SCOConfiguration_t SCOConfiguration)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConfiguration HCI SCO Configuration to set the device to. This valus is one

of:
 hscNoChannels

 hscOneChannel8BitVoice

 hscOneChannel16BitVoice

 hscTwoChannel8BitVoice

 hscTwoChannel16BitVoice

 hscThreeChannel8BitVoice

 hscThreeChannel16BitVoice

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 290 of 737 January 10, 2014

HCI_Reconfigure_Driver

This function issues the appropriate call to an HCI driver to request the HCI Driver to

reconfigure itself with the corresponding configuration information.

Prototype:

int BTPSAPI HCI_Reconfigure_Driver(unsigned int BluetoothStackID,

Boolean_t ResetStateMachines,

HCI_Driver_Reconfigure_Data_t *DriverReconfigureData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ResetStatemachines Flag which is passed to the drivers that specifies whether the

HCI driver internal state machines (for example, BCSP and/or

packet building state machines) should be reset (TRUE) or not

(FALSE).

DriverReconfigureData HCI Driver Reconfiguration information. This structure has the

following format:

typedef struct

{

 DWord_t ReconfigureCommand;

 void *ReconfigureData;

} HCI_Driver_Reconfigure_Data_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Set_Host_Flow_Control

This function issues the appropriate call to HCI Commands to configure the Controller to

Host Flow Control configuration. Controller to Host Flow Control used to limit the

number of ACL or SCO Data Packets that the Controller can send to the Host without

using credits back.

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 291 of 737 January 10, 2014

Once this function is called to enable Controller to Host Flow Control, all the handling of

this mechanism will be handled internally.

If the NumberOfACLPackets and NumberOfSCOPackets are both set to ZERO then

Controller to Host Flow Control will be disabled.

Prototype:

int BTPSAPI HCI_Set_Host_Flow_Control (unsigned int BluetoothStackID,

Word_t NumberOfACLPackets,

Word_t NumberOfSCOPackets)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

NumberOfACLPackets The number of ACL packets the Controller can send to the Host

without receiving credits back.

NumberOfSCOPackets The number of SCO packets the Controller can send to the Host

without receiving credits back.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Query_Host_Flow_Control

This function queries the Controller to Host Flow Control configuration. Controller to

Host Flow Control used to limit the number of ACL or SCO Data Packets that the

Controller can send to the Host without using credits back.

Prototype:

int BTPSAPI HCI_Query_Host_Flow_Control (unsigned int BluetoothStackID,

Word_t *NumberOfACLPackets,

Word_t *NumberOfSCOPackets)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 292 of 737 January 10, 2014

NumberOfACLPackets Pointer to return the number of ACL packets the Controller can

send to the Host without receiving credits back.

NumberOfSCOPackets Pointer to return the number of SCO packets the Controller can

send to the Host without receiving credits back.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.10 HCI Event/Data Callbacks and Registration

In order to receive HCI Events or ACL Data, one must register callback functions with the HCI

portion of the stack. The HCI Event callbacks are called whenever the appropriate HCI event

trigger occurs, such as at the completion of an inquiry or when a connection is made. The ACL

Data callbacks are called whenever a complete ACL packet arrives. Below are the descriptions of

the Prototypes for these two callbacks, followed by the functions used to register these callbacks

with the HCI portion of the stack.

HCI_Event_Callback_t

The following declared type represents thePrototype Function for an HCI Event receive

callback. This function will be called whenever a complete HCI Event Packet has been

received by the HCI Layer that is associated with the specified Bluetooth stack. The caller

is free to use the contents of the HCI Event Data only in the context of this callback. If

the caller requires the Data for a longer period of time, then the callback function must

copy the data into another Data Buffer. This function is guaranteed NOT to be invoked

more than once simultaneously for the specified installed callback (i.e. this function does

not have be reentrant). It Needs to be noted however, that if the same Callback is installed

more than once, then the callbacks will be called serially. Because of this, the processing

in this function should be as efficient as possible. It should also be noted that this

function is called in the Thread Context of a Thread that the User does NOT own.

Therefore, processing in this function should be as efficient as possible (this argument

holds anyway because another HCI Event Packet will not be processed while this function

call is outstanding). NOTE: This function MUST NOT Block and wait for events that

can only be satisfied by receiving HCI Event Packets. A deadlock WILL occur because

NO HCI Event receive callbacks will be issued while this function is currently

outstanding.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 293 of 737 January 10, 2014

Prototype:

void (BTPSAPI *HCI_Event_Callback_t)(unsigned int BluetoothStackID,

HCI_Event_Data_t *HCI_Event_Data, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

HCI_Event_Data A structure which contains a union of all event data structures

possible. This structure is defined as follows:

typedef struct

{

 HCI_Event_Type_t Event_Data_Type;

 Word_t Event_Data_Size;

 union

 {

 HCI_Inquiry_Complete_Event_Data_t

*HCI_Inquiry_Complete_Event_Data;

 HCI_Inquiry_Result_Event_Data_t

*HCI_Inquiry_Result_Event_Data;

 HCI_Connection_Complete_Event_Data_t

 *HCI_Connection_Complete_Event_Data;

 HCI_Connection_Request_Event_Data_t

*HCI_Connection_Request_Event_Data;

 HCI_Disconnection_Complete_Event_Data_t

*HCI_Disconnection_Complete_Event_Data;

 HCI_Authentication_Complete_Event_Data_t

*HCI_Authentication_Complete_Event_Data;

 HCI_Remote_Name_Request_Complete_Event_Data_t

*HCI_Remote_Name_Request_Complete_Event_Data;

 HCI_Encryption_Change_Event_Data_t

*HCI_Encryption_Change_Event_Data;

 HCI_Change_Connection_Link_Key_Complete_Event_Data_t

*HCI_Change_Connection_Link_Key_Complete_Event_Data;

 HCI_Master_Link_Key_Complete_Event_Data_t

*HCI_Master_Link_Key_Complete_Event_Data;

 HCI_Read_Remote_Supported_Features_Complete_Event_Data_t

*HCI_Read_Remote_Supported_Features_Complete_Event_Data;

 HCI_Read_Remote_Version_Information_Complete_Event_Data_t

*HCI_Read_Remote_Version_Information_Complete_Event_Data;

 HCI_QoS_Setup_Complete_Event_Data_t

*HCI_QoS_Setup_Complete_Event_Data;

 HCI_Hardware_Error_Event_Data_t

*HCI_Hardware_Error_Event_Data;

 HCI_Flush_Occurred_Event_Data_t

*HCI_Flush_Occurred_Event_Data;

 HCI_Role_Change_Event_Data_t

*HCI_Role_Change_Event_Data;

 HCI_Number_Of_Completed_Packets_Event_Data_t

*HCI_Number_Of_Completed_Packets_Event_Data;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 294 of 737 January 10, 2014

 HCI_Mode_Change_Event_Data_t

*HCI_Mode_Change_Event_Data;

 HCI_Return_Link_Keys_Event_Data_t

*HCI_Return_Link_Keys_Event_Data;

 HCI_PIN_Code_Request_Event_Data_t

*HCI_PIN_Code_Request_Event_Data;

 HCI_Link_Key_Request_Event_Data_t

*HCI_Link_Key_Request_Event_Data;

 HCI_Link_Key_Notification_Event_Data_t

*HCI_Link_Key_Notification_Event_Data;

 HCI_Loopback_Command_Event_Data_t

*HCI_Loopback_Command_Event_Data;

 HCI_Data_Buffer_Overflow_Event_Data_t

*HCI_Data_Buffer_Overflow_Event_Data;

 HCI_Max_Slots_Change_Event_Data_t

*HCI_Max_Slots_Change_Event_Data;

 HCI_Read_Clock_Offset_Complete_Event_Data_t

*HCI_Read_Clock_Offset_Complete_Event_Data;

 HCI_Connection_Packet_Type_Changed_Event_Data_t

*HCI_Connection_Packet_Type_Changed_Event_Data;

 HCI_QoS_Violation_Event_Data_t

*HCI_QoS_Violation_Event_Data;

 HCI_Page_Scan_Repetition_Mode_Change_Event_Data_t

*HCI_Page_Scan_Repetition_Mode_Change_Event_Data;

 HCI_Page_Scan_Mode_Change_Event_Data_t

*HCI_Page_Scan_Mode_Change_Event_Data;

HCI_Flow_Specification_Complete_Event_Data_t

*HCI_Flow_Specification_Complete_Event_Data;

 HCI_Inquiry_Result_With_RSSI_Event_Data_t

*HCI_Inquiry_Result_With_RSSI_Event_Data;

 HCI_Read_Remote_Extended_Features_Complete_Event_Data_t

*HCI_Read_Remote_Extended_Features_Complete_Event_Data;

 HCI_Synchronous_Connection_Complete_Event_Data_t

*HCI_Synchronous_Connection_Complete_Event_Data;

 HCI_Synchronous_Connection_Changed_Event_Data_t

*HCI_Synchronous_Connection_Changed_Event_Data;

 HCI_Sniff_Subrating_Event_Data_t

*HCI_Sniff_Subrating_Event_Data;

 HCI_Extended_Inquiry_Result_Event_Data_t

*HCI_Extended_Inquiry_Result_Event_Data;

 HCI_Encryption_Key_Refresh_Complete_Event_Data_t

*HCI_Encryption_Key_Refresh_Complete_Event_Data;

 HCI_IO_Capability_Request_Event_Data_t

*HCI_IO_Capability_Request_Event_Data;

 HCI_IO_Capability_Response_Event_Data_t

*HCI_IO_Capability_Response_Event_Data;

 HCI_User_Confirmation_Request_Event_Data_t

*HCI_User_Confirmation_Request_Event_Data;

 HCI_User_Passkey_Request_Event_Data_t

*HCI_User_Passkey_Request_Event_Data;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 295 of 737 January 10, 2014

 HCI_Remote_OOB_Data_Request_Event_Data_t

*HCI_Remote_OOB_Data_Request_Event_Data;

 HCI_Simple_Pairing_Complete_Event_Data_t

*HCI_Simple_Pairing_Complete_Event_Data;

 HCI_Link_Supervision_Timeout_Changed_Event_Data_t

*HCI_Link_Supervision_Timeout_Changed_Event_Data;

 HCI_Enhanced_Flush_Complete_Event_Data_t

*HCI_Enhanced_Flush_Complete_Event_Data;

 HCI_User_Passkey_Notification_Event_Data_t

*HCI_User_Passkey_Notification_Event_Data;

 HCI_Keypress_Notification_Event_Data_t

*HCI_Keypress_Notification_Event_Data;

 HCI_Remote_Host_Supported_Features_Notification_Event_Data_t

*HCI_Remote_Host_Supported_Features_Notification_Event_Data;

 HCI_Physical_Link_Complete_Event_Data_t

*HCI_Physical_Link_Complete_Event_Data;

 HCI_Channel_Selected_Event_Data_t

*HCI_Channel_Selected_Event_Data;

 HCI_Disconnection_Physical_Link_Complete_Event_Data_t

*HCI_Disconnection_Physical_Link_Complete_Event_Data;

 HCI_Physical_Link_Loss_Early_Warning_Event_Data_t

*HCI_Physical_Link_Loss_Early_Warning_Event_Data;

 HCI_Physical_Link_Recovery_Event_Data_t

*HCI_Physical_Link_Recovery_Event_Data;

 HCI_Logical_Link_Complete_Event_Data_t

*HCI_Logical_Link_Complete_Event_Data;

 HCI_Disconnection_Logical_Link_Complete_Event_Data_t

*HCI_Disconnection_Logical_Link_Complete_Event_Data;

 HCI_Flow_Spec_Modify_Complete_Event_Data_t

*HCI_Flow_Spec_Modify_Complete_Event_Data;

 HCI_Number_Of_Completed_Data_Blocks_Event_Data_t

*HCI_Number_Of_Completed_Data_Blocks_Event_Data;

 HCI_Short_Range_Mode_Change_Complete_Event_Data_t

*HCI_Short_Range_Mode_Change_Complete_Event_Data;

 HCI_AMP_Status_Change_Event_Data_t

*HCI_AMP_Status_Change_Event_Data;

 HCI_AMP_Start_Test_Event_Data_t

*HCI_AMP_Start_Test_Event_Data;

 HCI_AMP_Test_End_Event_Data_t

*HCI_AMP_Test_End_Event_Data;

 HCI_AMP_Receiver_Report_Event_Data_t

*HCI_AMP_Receiver_Report_Event_Data;

 HCI_LE_Meta_Event_Data_t

*HCI_LE_Meta_Event_Data;

 HCI_Platform_Specific_Event_Data_t

*HCI_Platform_Specific_Event_Data;

 void

*HCI_Unknown_Event_Data;

 } Event_Data;

} HCI_Event_Data_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 296 of 737 January 10, 2014

where, HCI_Event_Type_t is an enumeration of the event types

listed in the table in section 2.2.11, and each data structure in

the union is described with its event in that section as well.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

HCI_ACL_Data_Callback_t

The following declared type represents thePrototype Function for an ACL Data Receive

Data Callback. This function will be called whenever a complete ACL Data Packet has

been received by the HCI Layer that is associated with the specified Bluetooth Stack ID.

This function passes to the caller the Bluetooth Stack ID, the ACL Data that was received

and the HCI ACL Data Callback Parameter that was specified when this Callback was

installed. The caller is free to use the ACL Data Contents only in the context of this

callback. If the caller requires the Data for a longer period of time, then the callback

function MUST copy the data into another Data Buffer. This function is guaranteed NOT

to be invoked more than once simultaneously for the specified installed callback (i.e. this

function DOES NOT have be reentrant). It needs to be noted however, that if the same

Callback is installed more that once, then the callbacks will be called serially. Because of

this, the processing in this function should be as efficient as possible. It should also be

noted that this function is called in the Thread Context of a Thread that the User does not

own. Therefore, processing in this function should be as efficient as possible (this

argument holds anyway because another ACL Data Packet will not be processed while

this function call is outstanding).

Prototype:

void (BTPSAPI *HCI_ACL_Data_Callback_t)(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Flags, Word_t ACLDataLength, Byte_t *ACLData,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags ACL Packet Flags.

ACLDataLength Number of bytes returned in the array pointed to by ACLData.

ACLData Pointer to the ACL data.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 297 of 737 January 10, 2014

HCI_SCO_Data_Callback_t

The following declared type represents thePrototype Function for an SCO Data Receive

Data Callback. This function will be called whenever a complete SCO Data Packet has

been received by the HCI Layer that is associated with the specified Bluetooth Stack ID.

This function passes to the caller the Bluetooth Stack ID, the SCO Data that was received

and the HCI SCO Data Callback Parameter that was specified when this Callback was

installed. The caller is free to use the SCO Data Contents only in the context of this

callback. If the caller requires the Data for a longer period of time, then the callback

function MUST copy the data into another Data Buffer. This function is guaranteed NOT

to be invoked more than once simultaneously for the specified installed callback (i.e. this

function DOES NOT have be reentrant). It needs to be noted however, that if the same

Callback is installed more that once, then the callbacks will be called serially. Because of

this, the processing in this function should be as efficient as possible. It should also be

noted that this function is called in the Thread Context of a Thread that the User does not

own. Therefore, processing in this function should be as efficient as possible (this

argument holds anyway because another SCO Data Packet will not be processed while this

function call is outstanding).

Prototype:

void (BTPSAPI *HCI_SCO_Data_Callback_t)(unsigned int BluetoothStackID,

Word_t Connection_Handle, Word_t Flags, Byte_t SCODataLength, Byte_t *SCOData,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags For future use.

SCODataLength Number of bytes returned in the array pointed to by SCOData.

SCOData Pointer to the SCO data.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

HCI_Register_Event_Callback

This function registers a user-supplied callback function (as defined above) to handle HCI

Events.

Prototype:

int BTPSAPI HCI_Register_Event_Callback(unsigned int BluetoothStackID,

HCI_Event_Callback_t HCI_EventCallback, unsigned long CallbackParameter);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 298 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

HCI_EventCallback User-supplied callback function.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive non-zero value if successful. This is the CallbackID which is used to unregister

the callback.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_UNABLE_TO_REGISTER_EVENT_CALLBACK

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Register_ACL_Data_Callback

This function registers a user-supplied callback function (as defined above) for receiving

ACL Data packets.

Prototype:

int BTPSAPI HCI_Register_ACL_Data_Callback(unsigned int BluetoothStackID,

HCI_ACL_Data_Callback_t HCI_ACLDataCallback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

HCI_ACLDataCallback User-supplied callback function (see definition early in this

section).

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive non-zero value if successful. This is the CallbackID which is used to unregister

the callback.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 299 of 737 January 10, 2014

BTPS_ERROR_UNABLE_TO_REGISTER_ACL_CALLBACK

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Register_SCO_Data_Callback

This function registers a user-supplied callback function (as defined above) for receiving

SCO Data packets.

Prototype:

int BTPSAPI HCI_Register_SCO_Data_Callback(unsigned int BluetoothStackID,

HCI_SCO_Data_Callback_t HCI_SCODataCallback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

HCI_ SCODataCallback User-supplied callback function (see definition early in this

section).

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive non-zero value if successful. This is the CallbackID which is used to unregister

the callback.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_UNABLE_TO_REGISTER_SCO_CALLBACK

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

HCI_Un_Register_Callback

Remove a previously installed callback of either type: HCI Event, HCI ACL Data or HCI

SCO Data.

Prototype:

int BTPSAPI HCI_Un_Register_Callback(unsigned int BluetoothStackID,

unsigned int CallbackID)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 300 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

CallbackID Identifier assigned via one of the callback registrations:

HCI_Register_Event_Callback

HCI_Register_ACL_Data_Callback

HCI_Register_SCO_Data_Callback

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.2.11 HCI Events

The table below lists the HCI events supported by the current version of the Bluetooth Stack

Protocol API. Each event’s parameters are further described in text below. The events are an

enumeration instance of the enumeration type: HCI_Event_Type_t. The Bluetooth specification

includes references to two events not included in this list: Command Complete event and

Command Status event. They are omitted from this list because these events are not visible to the

application programmer, but are trapped by the Bluetooth Stack and used to set the function

return values.

Event Description

etInquiry_Complete_Event Indicates that the Inquiry is finished.

etInquiry_Result_Event Indicates that one or more Bluetooth devices have

responded so far during the current Inquiry process.

etConnection_Complete_Event Indicates to both of the Hosts forming the connection

that a new connection has been established.

etConnection_Request_Event Indicates that a new incoming connection is trying to

be established.

etDisconnection_Complete_Event Indicates that a connection has been terminated.

etAuthentication_Complete_Event Indicates that the authentication has been completed

for the specified connection.

etRemote_Name_Request_Complete_E Indicates that a remote name request has been

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 301 of 737 January 10, 2014

Event Description

vent completed.

etEncryption_Change_Event Indicates that the change in the encryption has been

completed for a connection.

etChange_Connection_Link_Key_

Complete_Event

Indicates that the change in the Link Key for the

connection has been completed.

etMaster_Link_Key_Complete_

Event

Indicates that the change in the temporary Link Key or

in the semi-permanent link keys on the Bluetooth

master side has been completed.

etRead_Remote_Supported_Features_

Complete_Event

Indicates the completion of the process of obtaining

the supported features of the remote Bluetooth device.

etRead_Remote_Version_Information_

Complete_Event

Indicates the completion of the process of obtaining

the version information of the remote Bluetooth

device.

etQoS_Setup_Complete_Event Indicates the completion of the process of setting up

QoS with the remote Bluetooth device.

etHardware_Error_Event Indicates some type of hardware failure for the

Bluetooth device.

etFlush_Occurred_Event Indicates that, for the specified connection, the current

user data to be transmitted has been removed.

etRole_Change_Event Indicates that the current Bluetooth role related to the

particular connection has been changed.

etNumber_Of_Completed_Packets_

Event

Indicates to the Host how many HCI Data Packets

have been completed for each Connection Handle

since the previous Number Of Completed Packets

Event was sent. (part of flow control)

etMode_Change_Event Indicates when the device associated with a

connection changes between Active, Hold, Sniff and

Park modes.

etReturn_Link_Keys_Event Returns stored link keys after a

Read_Stored_Link_Key command is used.

etPIN_Code_Request_Event Indicates that a PIN code is required to create a new

link key for a connection.

etLink_Key_Request_Event Indicates that a Link Key is required for the

connection with the device specified.

etLink_Key_Notification_Event Indicates to the Host that a new Link Key has been

created for the connection with a device.

etLoopback_Command_Event Returns most commands that the Host sends to the

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 302 of 737 January 10, 2014

Event Description

Host Controller while in loopback testing mode.

etData_Buffer_Overflow_Event Indicates that the Host Controller's data buffers have

overflowed, because the Host has sent more packets

than allowed.

etMax_Slots_Change_Event Notifies the Host about the LMP_Max_Slots

parameter when the value of this parameter changes.

etRead_Clock_Offset_Complete_Event Indicates the completion of the process of obtaining

the Clock offset information.

etConnection_Packet_Type_Changed_

Event

Indicates the completion of the process of changing

the Packet Types used for the specified connection.

etQoS_Violation_Event Indicates that the Link Manager is unable to provide

the current QoS requirement for the connection.

etPage_Scan_Mode_Change_Event Indicates that the connected remote Bluetooth device

has successfully changed the Page_Scan_Mode.

etPage_Scan_Repetition_Mode_

Change_Event

Indicates that the connected remote Bluetooth device

has successfully changed the

Page_Scan_Repetition_Mode (SR).

etBluetooth_Logo_Testing_Event* Reserved for Bluetooth Logo Testing Events.

etVendor_Specific_Debug_Event* Reserved for Vendor Specific Debug Events.

etDevice_Reset_Event* Indicates that the local Bluetooth device has been

reset.

etFlow_Specification_Complete_Event Indicates the Quality of Service for the ACL

Connection the Controller is able to support.

etInquiry_Result_With_RSSI_Event Indicates that one or more Bluetooth devices have

responded so far during the current Inquiry process.

etRead_Remote_Extended_Features_

Complete_Event

Indicates the completion of the process of the Link

Manager obtaining the remote extended LMP features

of the remote device.

etSynchronous_Connection_Complete_

Event

Indicates to both the Hosts that a new Synchronous

connection has been established.

etSynchronous_Connection_Changed_

Event

Indicates to the Host that an existing Synchronous

connection has been reconfigured.

etSniff_Subrating_Event Indicates that specified device has had a sniff

subrating enabled or the parameters have been

changed.

etExtended_Inquiry_Result_Event Indicates that controller has responded during inquiry

process with extended inquiry response data.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 303 of 737 January 10, 2014

Event Description

etEncryption_Key_Refresh_Complete_

Event

Indicates that encryption key was refreshed on a given

connection handle.

etIO_Capability_Request_Event Indicates that IO capabilities of the host are required

for simple pairing process.

etIO_Capability_Response_Event Indicates that IO capabilities of remote host have been

received.

etUser_Confirmation_Request_Event Indicates that user confirmation of a numeric value is

needed.

etUser_Passkey_Request_Event Indicates that passkey is required as part of Simple

Pairing process.

etRemote_OOB_Data_Request_Event Indicates that Simple Pairing Hash C and Simple

Pairing Randomizer R is required for the Secure

Simple Pairing process.

etSimple_Pairing_Complete_Event Indicates that Simple Pairing process has completed.

etLink_Supervision_Timeout_Changed

_Event

Indicates to slave’s host that Link Supervision

Timeout parameter has changed in the slave controller.

etEnhanced_Flush_Complete_Event Indicates that an Enhanced Flush is complete for

specified handle.

etUser_Passkey_Notification_Event Used to provide a passkey to display to user as

required by Simple Pairing process.

etKeypress_Notification_Event Sent to the host after a passkey notification has been

received by Link Manager on specified device.

etRemote_Host_Supported_Features_N

otification_Event

Used to return LMP extended features page which

contains Host features.

etPhysical_Link_Complete_Event Indicates that a new physical link has been established.

etChannel_Selected_Event Indicates that link information data is available to be

read.

etDisconnection_Physical_Link_Compl

ete_Event

Indicates a physical link was terminated.

etPhysical_Link_Loss_Early_Warning

_Event

Occurs when physical link has indications that it may

be disrupted.

etPhysical_Link_Recovery_Event Indicates that whatever caused

etPhysical_Link_Loss_Early_Warning_Event has

been cleared.

etLogical_Link_Complete_Event Indicates to host that a new logical link has been

successfully established.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 304 of 737 January 10, 2014

Event Description

etDisconnection_Logical_Link_Compl

ete_Event

Occurs when logical link is terminated on local

controller.

etFlow_Spec_Modify_Complete_Event Indicates that Flow Spec Modify command has

completed.

etNumber_Of_Completed_Data_Block

s_Event

Indicates how many ACL data packets have been

completed and how many data block buffers freed.

etShort_Range_Mode_Change_Comple

te_Event

Indicates that a controller was asked to enable or

disable the Short Range Mode for a specified physical

link.

etAMP_Status_Change_Event Indicates that a change has occurred to AMP status.

etAMP_Start_Test_Event Indicates that HCI_AMP_Test_Command has

completed.

etAMP_Test_End_Event Indicates AMP has transmitted or received number of

frames/bursts configured for a test.

etAMP_Receiver_Report_Event Indicates number of frames received for a test.

etLE_Meta_Event Indicates Bluetooth Low Energy event has occurred.

etPlatform_Specific_Event* Indicates a platform specific event has occurred.

* The returned data for these events is NOT defined in the Bluetooth Core Specification.

LE specific events are contained with a LE Meta Event. Each LE event is represented as a

subevent code within this Meta Event. Each one of these subevents is an enumeration of the

enumeration type HCI_LE_Meta_Event_Type_t. The table below lists each of these. See section

2.2.12 for a description of these events.

Subevent Description

meConnection_Complete_Event Indicates that a new connection has been created.

meAdvertising_Report_Event Indicates that a Bluetooth device or multiple devices

have responded to an active scan or received some

information during a passive scan.

meConnection_Update_Complete_Event Indicates that the controller has updated the

connection parameters.

meRead_Remote_Used_Features_Compl

ete_Event

Indicates the result of a Remote used feature request

to a remote Bluetooth device.

meLong_Term_Key_Request Indicates master device is trying to encrypt or re-

encrypt the link and is requesting the long term key

from the host.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 305 of 737 January 10, 2014

etInquiry_Complete_Event

This event indicates that the Inquiry operation is finished.

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Num_Responses;

} HCI_Inquiry_Complete_Event_Data_t

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Num_Responses Number of responses from the inquiry.

Note, this field is only valid if the Bluetooth device is using Ver

1.0B of the Bluetooth specification. This field is not valid if

using Ver 1.1 (or greater). The version can be obtained via a

call to the utility function HCI_Version_Supported

etInquiry_Result_Event

This event indicates that a Bluetooth device or multiple Bluetooth devices have responded

so far during the current Inquiry process. This event will be sent as soon as an Inquiry

Response from a remote device is received if the remote device supports only mandatory

paging scheme. The Host Controller may queue these Inquiry Responses and send

multiple Bluetooth devices information in one Inquiry Result event.

Return Structure:

The following structure represents the data returned for one inquiry result. The event result will

contain an array of these structures, preceded by a one-byte quantity Num_Responses.

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Byte_t Page_Scan_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

} HCI_Inquiry_Result_Data_t;

Event Parameters:

Num_Responses Number of responses, i.e., instances of response structures to

follow.

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the remote device

supports. The currently defined values are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 306 of 737 January 10, 2014

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Period_Mode Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Page_Scan_Mode The other part of the supported Page Scan Modes that the

remote device supports. The currently defined values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

Class_of_Device Bit mask list of features that determine the class of device for

this Bluetooth device. See the HCI_Read_Class_of_Device

command for a complete listing of feature bits.

etConnection_Complete_Event

This event indicates to both of the Hosts forming the connection that a new connection has

been established. This event also indicates to the Host, which initiated the connection if

the issued command failed or was successful.

Return Structure:

This event returns the following data, which may have zero or more responses.

typedef struct

{

 Byte_t Num_Responses;

 HCI_Inquiry_Result_Data_t HCI_Inquiry_Result_Data[1];

} HCI_Inquiry_Result_Event_Data_t;

The following is used to interpret each event entry in HCI_Inquiry_Result_Data[].

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 307 of 737 January 10, 2014

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 BD_ADDR_t BD_ADDR;

 Byte_t Link_Type;

 Byte_t Encryption_Mode;

} HCI_Connection_Complete_Event_Data_t;

Event Parameters:

Num_Responses Number of Inquiry results in this event response.

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

BD_ADDR Address of the other Bluetooth device.

Link_Type Type of link established. Possible values are:

HCI_LINK_TYPE_SCO_CONNECTION

HCI_LINK_TYPE_ACL_CONNECTION

Encryption_Mode Currently enabled encryption option. Possible values are:

HCI_ENCRYPTION_MODE_ENCRYPTION_DISABLED

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_PACKETS

HCI_ENCRYPTION_MODE_ENCRYPTION_POINT_TO_

POINT_BROADCAST_PACKETS

etConnection_Request_Event

This event indicates that a new incoming connection is trying to be established. The

connection may either be accepted or rejected. If this event is masked away and there is

an incoming connection attempt and the Host Controller is not set to auto-accept this

connection attempt, the Host Controller will automatically refuse the connection attempt.

When the Host receives this event, it should respond with either an

Accept_Connection_Request or Reject_Connection_Request command before the timer

Conn_Accept_Timeout expires.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 308 of 737 January 10, 2014

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Class_of_Device_t Class_of_Device;

 Byte_t Link_Type;

} HCI_Connection_Request_Event_Data_t;

Event Parameters:

BD_ADDR Address of the Bluetooth device requesting the connection.

Class_of_Device Bit mask list of features that determine the class of device for

this Bluetooth device. See the HCI_Read_Class_of_Device

command for a complete listing of feature bits.

Link_Type Type of link requested. Possible values are:

Bluetooth Version 1.1

HCI_LINK_TYPE_SCO_CONNECTION

HCI_LINK_TYPE_ACL_CONNECTION

Bluetooth Version 1.2

HCI_LINK_TYPE_ESCO_CONNECTION

etDisconnection_Complete_Event

This event occurs when a connection is terminated, with the status parameter indicating if

the disconnection was successful or not. The reason parameter indicates the reason for the

disconnection if the disconnection was successful. Note: When a physical link fails, one

Disconnection Complete event will be returned for each logical channel on the physical

link with the corresponding Connection handle as a parameter.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Reason;

} HCI_Disconnection_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 309 of 737 January 10, 2014

Reason The reason the connection was terminated. These codes also

appear in the HCI status codes (see table in the HCI

introduction). The expected subset of these codes is:

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNE

CTION_USER_ENDED

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNE

CTION_LOW_RESOURCES

HCI_ERROR_CODE_OTHER_END_TERMINATED_CONNE

CTION_ABOUT_TO_PWR_OFF

HCI_ERROR_CODE_UNSUPPORTED_REMOTE_FEATURE

etAuthentication_Complete_Event

This event occurs when authentication has been completed for the specified ACL

connection.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

} HCI_Authentication_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

etRemote_Name_Request_Complete_Event

This event indicates that a remote name request has been completed, and if successful,

returns the name in a null-terminated (0x00) string of length up to 249 bytes.

Return Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 char Remote_Name[1];

} HCI_Remote_Name_Request_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

BD_ADDR Address of the Bluetooth device that the name goes with.

Remote_Name Returned name string for the remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 310 of 737 January 10, 2014

etEncryption_Change_Event

This event indicates that the change in the encryption has been completed for the ACL

connection specified. This event will occur on both devices to notify both Hosts when

encryption has changed for the specified connection between the two devices.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Encryption_Enable;

} HCI_Encryption_Change_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Encryption_Enable Flag indicating whether the encryption should be turned on or

off. Possible values are:

HCI_ENCRYPTION_ENABLE_LINK_LEVEL_OFF

HCI_ENCRYPTION_ENABLE_LINK_LEVEL_ON

etChange_Connection_Link_Key_Complete_Event

This event indicates that the change in the Link Key for the specified ACL connection has

been completed. This event is sent only to the Host which issued the

Change_Connection_Link_Key command.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

} HCI_Change_Connection_Link_Key_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 311 of 737 January 10, 2014

etMaster_Link_Key_Complete_Event

This event indicates that the Link Key managed by the master of the piconet has been

changed. The link key used for the connection will be the temporary link key of the

master device or the semi-permanent link key indicated by the Key_Flag, which is also the

Link Key now being used in the piconet. Note: for a master, the change from a semi-

permanent Link Key to temporary Link Key will affect all connections related to the

piconet. For a slave, this change affects only this particular connection.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Key_Flag;

} HCI_Master_Link_Key_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Key_Flag Indicator of which link key was changed to. Possible values

are:

HCI_MASTER_LINK_KEY_USE_SEMI_PERMANENT_

LINK_KEYS

HCI_MASTER_LINK_KEY_USE_TEMPORARY_

LINK_KEYS

etRead_Remote_Supported_Features_Complete_Event

This event indicates the completion of the process of obtaining the supported features of

the remote Bluetooth device for the specified ACL connection, and returns the information

if successful.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 LMP_Features_t LMP_Features;

} HCI_Read_Remote_Supported_Features_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 312 of 737 January 10, 2014

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

LMP_Features Bit mask list of supported features. See the description of the

HCI_Read_Local_Supported_Features command for an

explanation of these bits and macros to manipulate them.

etRead_Remote_Version_Information_Complete_Event

This event indicates the completion of the process of obtaining the version information of

the remote Bluetooth device for a specified ACL connection, and returns the information

if successful.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t LMP_Version;

 Word_t Manufacturer_Name;

 Word_t LMP_Subversion;

} HCI_Read_Remote_Version_Information_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

LMP_Version The Link Manager Protocol version number. Possible values

are:

HCI_LMP_VERSION_BLUETOOTH_1_0

HCI_LMP_VERSION_BLUETOOTH_1_1

HCI_LMP_VERSION_BLUETOOTH_1_2

HCI_LMP_VERSION_BLUETOOTH_2_0

HCI_LMP_VERSION_BLUETOOTH_2_1

HCI_ LMP_VERSION_BLUETOOTH_3_0

HCI_ LMP_VERSION_BLUETOOTH_4_0

Manufacturer_Name Manufacturer code. Possible values are:

HCI_LMP_COMPID_MANUFACTURER_NAME_

ERICSSON_MOBILE_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

NOKIA_MOBILE_PHONES

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEL_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

IBM_CORPORATION

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 313 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

TOSHIBA_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

3COM

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICROSOFT

HCI_LMP_COMPID_MANUFACTURER_NAME_

LUCENT

HCI_LMP_COMPID_MANUFACTURER_NAME_

MOTOROLA

HCI_LMP_COMPID_MANUFACTURER_NAME_

INFINEON_TECHNOLOGIES_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_

CAMBRIDGE_SILICON_RADIO

HCI_LMP_COMPID_MANUFACTURER_NAME_

SILICON_WAVE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DIGIANSWER

HCI_LMP_COMPID_MANUFACTURER_NAME_

TEXAS_INSTRUMENTS

HCI_LMP_COMPID_MANUFACTURER_NAME_

PARTHUS_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

BROADCOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

MITEL_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

WIDCOMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

TELENCOMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

ATMEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

MITSUBISHI

HCI_LMP_COMPID_MANUFACTURER_NAME_

RTX_TELECOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

KC_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

NEWLOGIC

HCI_LMP_COMPID_MANUFACTURER_NAME_

TRANSILICA

HCI_LMP_COMPID_MANUFACTURER_NAME_

ROHDE_AND_SCHWARTZ

HCI_LMP_COMPID_MANUFACTURER_NAME_

TTPCOM

HCI_LMP_COMPID_MANUFACTURER_NAME_

SIGNIA_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONEXANT_SYSTEMS

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 314 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

INVENTEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

AVM_BERLIN

HCI_LMP_COMPID_MANUFACTURER_NAME_

BANDSPEED

HCI_LMP_COMPID_MANUFACTURER_NAME_

MANSELLA

HCI_LMP_COMPID_MANUFACTURER_NAME_

NEC

HCI_LMP_COMPID_MANUFACTURER_NAME_

WAVEPLUS_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ALCATEL

HCI_LMP_COMPID_MANUFACTURER_NAME_

PHILIPS_SEMICONDUCTORS

HCI_LMP_COMPID_MANUFACTURER_NAME_

C_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

OPEN_INTERFACE

HCI_LMP_COMPID_MANUFACTURER_NAME_

RF_MICRO_DEVICES

HCI_LMP_COMPID_MANUFACTURER_NAME_

HITACHI

HCI_LMP_COMPID_MANUFACTURER_NAME_

SYMBOL_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

TENOVIS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MACRONIX_INTERNATIONAL

HCI_LMP_COMPID_MANUFACTURER_NAME_

GCT_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

NORWOOD_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MEWTEL_TECHNOLOGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ST_MICROELECTRONICS

 HCI_LMP_COMPID_MANUFACTURER_NAME_

SYNOPSYS

HCI_LMP_COMPID_MANUFACTURER_NAME_

RED_M_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

COMMIL_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

CATC

HCI_LMP_COMPID_MANUFACTURER_NAME_

ECLIPSE_SL

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 315 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

RENESAS_TECHNOLOGY_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

MOBILIAN_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

TERAX

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEGRATED_SYSTEM_SOLUTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

MATSUSHITA

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENNUM_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

RESEARCH_IN_MOTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

IPEXTREME

HCI_LMP_COMPID_MANUFACTURER_NAME_

SYSTEMS_AND_CHIPS

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUETOOTH_SIG

HCI_LMP_COMPID_MANUFACTURER_NAME_

SEIKO_EPSON_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

INTEGRATED_SILICON_SOLUTION

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONWISE_TECHNOLOGY_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

PARROT_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_

SOCKET_MOBILE

HCI_LMP_COMPID_MANUFACTURER_NAME_

ATHEROS_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MEDIATEK_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUEGIGA

HCI_LMP_COMPID_MANUFACTURER_NAME_

MARVELL_TECHNOLOGY_GROUP

HCI_LMP_COMPID_MANUFACTURER_NAME_

3DSP_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

ACCEL_SEMICONDUCTOR

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONTINENTAL_AUTOMOTIVE_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_

APPLE_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_

STACCATO_COMMUNICATIONS

HCI_LMP_COMPID_MANUFACTURER_NAME_

AVAGO_TECHONOLOGIES

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 316 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_APT_

LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_SIRF_

TECHONOLIGY

HCI_LMP_COMPID_MANUFACTURER_NAME_

TZERO_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_J_

AND_M_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

FREE2MOVE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_3DIJOY_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

PLANTRONICS_INCORPORATED

HCI_LMP_COMPID_MANUFACTURER_NAME_SONY_

ERICSSON_MOBILE_COMM

HCI_LMP_COMPID_MANUFACTURER_NAME_

HARMAN_INTERNATIONAL_IND

HCI_LMP_COMPID_MANUFACTURER_NAME_

VIZIO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_NORDIC_S

EMICONDUCTOR_ASA

HCI_LMP_COMPID_MANUFACTURER_NAME_EM_

MICROELECTRONIC_MARIN_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_RALINK_T

ECHNOLOGY_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_BELKIN_

INTERNATIONAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

REALTEK_SEMICONDUCTOR_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

STONESTREET_ONE_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

WICENTRIC_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_RIVIERA_

WAVES_SAS

HCI_LMP_COMPID_MANUFACTURER_NAME_RDA_

MICROELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_GIBSON_G

UITARS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICOMMAND_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_BAND_

XI_INTERNATIONAL_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

HEWLETT_PACKARD_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_

9SOLUTIONS_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_GN_

NETCOM_AS

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 317 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENERAL_MOTORS

HCI_LMP_COMPID_MANUFACTURER_NAME_A_

AND_D_ENGINEERING_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

MINDTREE_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_POLAR_

ELECTRO_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

BEAUTIFUL_ENTERPRISE_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_

BRIARTEK_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_SUMMIT_

DATA_COMMUNICATIONS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_SOUND_ID

HCI_LMP_COMPID_MANUFACTURER_NAME_

MONSTER_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

CONNECT_BLUE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_

SHANGHAI_SUPER_SMART_ELECTRON

HCI_LMP_COMPID_MANUFACTURER_NAME_GROUP_

SENSE_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ZOMM_

LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

SAMSUNG_ELECTRONICS_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

CREATIVE_TECHNOLOGY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_LAIRD_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_NIKE_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

LESSWIRE_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_MSTAR_

SEMICONDUCTOR_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

HANLYNN_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_A_AND_R_

CAMBRIDGE

HCI_LMP_COMPID_MANUFACTURER_NAME_SEERS_

TECHNOLOGY_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_SPORTS_

TRACKING_TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_

AUTONET_MOBILE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DELORME_PUBLISHING_COMPANY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_WUXI_

VIMICRO

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 318 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

SENNHEISER_COMMUNICATIONS_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

TIMEKEEPING_SYSTEMS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_LUDUS_

HELSINKI_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUERADIOS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

EQUINUX_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_GARMIN_

INTERNATIONAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ECOTEST

HCI_LMP_COMPID_MANUFACTURER_NAME_GN_

RESOUND_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_JAWBONE

HCI_LMP_COMPID_MANUFACTURER_NAME_TOPCON_

POSITIONING_SYSTEMS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_LABS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ZSCAN_

SOFTWARE

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUINTIC_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

STOLLMANN_E_V_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_FUNAI

_ELECTRIC_COMPANY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

ADVANCED_PANMOBIL_SYSTEMS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

THINKOPTICS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

UNIVERSAL_ELECTRONICS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_AIROHA_

TECHNOLOGY_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_NEC_

LIGHTING_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ODM_

TECHNOLOGY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

BLUETREK_TECHNOLOGIES_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_ZERO_1_

TV_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_I_TECH_

DYNAMIC_GLOBAL_DIST_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_ALPWISE

HCI_LMP_COMPID_MANUFACTURER_NAME_JIANGSU_

TOPPOWER_AUTOMOTIVE

HCI_LMP_COMPID_MANUFACTURER_NAME_COLORFY_

INC

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 319 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

GEOFORCE_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_BOSE_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_SUUNTO_

OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

KENSINGTON_COMPUTER_PROD_GROUP

HCI_LMP_COMPID_MANUFACTURER_NAME_SR_

MEDIZINELEKTRONIK

HCI_LMP_COMPID_MANUFACTURER_NAME_VERTU_

CORPORATION_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_META_

WATCH_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_LINAK_

A_S

HCI_LMP_COMPID_MANUFACTURER_NAME_OTL_

DYNAMICS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_PANDA_

OCEAN_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_VISTEON_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_ARP_

DEVICES_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_MAGNETI_

MARELLI_S_P_A

HCI_LMP_COMPID_MANUFACTURER_NAME_CAEN_

RFID_SRL

HCI_LMP_COMPID_MANUFACTURER_NAME_

INGENIEUR_SYSTEMGRUPPE_ZAHN

HCI_LMP_COMPID_MANUFACTURER_NAME_GREEN_

THROTTLE_GAMES

HCI_LMP_COMPID_MANUFACTURER_NAME_

PETER SYSTEMTECHNIK_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

OMEGAWAVE_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_CINETIX

HCI_LMP_COMPID_MANUFACTURER_NAME_PASSIF_

SEMICONDUCTOR_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_SARIS_

CYCLING_GROUP_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_BEKEY_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

CLARINOX_TECHNOLOGIES_PTY_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_BDE_

TECHNOLOGY_CO_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_SWIRL_

NETWORKS

HCI_LMP_COMPID_MANUFACTURER_NAME_MESO_

INTERNATIONAL

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 320 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_TRELAB_

LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_INNOVATION_CENTER_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_JOHNSON_

CONTROLS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_STARKEY_

LABORATORIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_S_POWER_

ELECTRONICS_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_ACE_

SENSOR_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_APLIX_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_AAMP_OF_

AMERICA

HCI_LMP_COMPID_MANUFACTURER_NAME_

STALMART_TECHNOLOGY_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_

AMICCOM_ELECTRONICS_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

SHENZHEN_EXCELSECU_DATA_TECH

HCI_LMP_COMPID_MANUFACTURER_NAME_

GENEQ_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

ADIDAS_AG

HCI_LMP_COMPID_MANUFACTURER_NAME_LG_

ELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_ONSET_

COMPUTER_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

SELFLY_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUUPPA_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_GELO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_EVLUMA

HCI_LMP_COMPID_MANUFACTURER_NAME_MC10

HCI_LMP_COMPID_MANUFACTURER_NAME_

BINAURIC_SE

HCI_LMP_COMPID_MANUFACTURER_NAME_BEATS_

ELECTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_

MICROCHIP_TECHNOLOGY_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ELGATO_

SYSTEMS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

ARCHOS_SA

HCI_LMP_COMPID_MANUFACTURER_NAME_

DEXCOM_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_POLAR_

ELECTRO_EUROPE_BV

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 321 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_DIALOG_

SEMICONDUCTOR_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_

TAIXINGBANG_TECHNOLOGY_HK_CO

HCI_LMP_COMPID_MANUFACTURER_NAME_

KAWANTECH

HCI_LMP_COMPID_MANUFACTURER_NAME_AUSTCO_

COMMUNICATION_SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_TIMEX_

GROUP_USA_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_TECHNOLOGIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

QUALCOMM_CONNECTED_EXPERIENCES

HCI_LMP_COMPID_MANUFACTURER_NAME_

VOYETRA_TURTLE_BEACH

HCI_LMP_COMPID_MANUFACTURER_NAME_

TXTR_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

BIOSENTRONICS

HCI_LMP_COMPID_MANUFACTURER_NAME_PROCTER_

AND_GAMBLE

HCI_LMP_COMPID_MANUFACTURER_NAME_HOSIDEN_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

MUZIK_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_MISFIT_

WEARABLES_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_GOOGLE

HCI_LMP_COMPID_MANUFACTURER_NAME_

DANLERS_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

SEMILINK_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_INMUSIC_

BRANDS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_LS_

RESEARCH_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_EDEN_

SOFTWARE_CONSULTANTS_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

FRESHTEMP

HCI_LMP_COMPID_MANUFACTURER_NAME_KS_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_ACTS_

TECHNOLOGIES

HCI_LMP_COMPID_MANUFACTURER_NAME_VTRACK_

SYSTEMS

HCI_LMP_COMPID_MANUFACTURER_NAME_NIELSEN_

KELLERMAN_COMPANY

HCI_LMP_COMPID_MANUFACTURER_NAME_SERVER_

TECHNOLOGY_INC

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 322 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

BIORESEARCH_ASSOCIATES

HCI_LMP_COMPID_MANUFACTURER_NAME_JOLLY_

LOGIC_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_ABOVE_

AVERAGE_OUTCOMES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

BITSPLITTERS_GMBH

HCI_LMP_COMPID_MANUFACTURER_NAME_

PAYPAL_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_WITRON_

TECHNOLOGY_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_MORSE_

PROJECT_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_KENT_

DISPLAYS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

NAUTILUS_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_

SMARTIFIER_OY

HCI_LMP_COMPID_MANUFACTURER_NAME_

ELCOMETER_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_VSN_

TECHNOLOGIES_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_ACEUNI_

CORP_LTD

HCI_LMP_COMPID_MANUFACTURER_NAME_

STICKNFIND

HCI_LMP_COMPID_MANUFACTURER_NAME_CRYSTAL_

CODE_AB

HCI_LMP_COMPID_MANUFACTURER_NAME_

KOUKAAM_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_

DELPHI_CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_

VALENCETECH_LIMITED

HCI_LMP_COMPID_MANUFACTURER_NAME_

RESERVED

HCI_LMP_COMPID_MANUFACTURER_NAME_TYPO_

PRODUCTS_LLC

HCI_LMP_COMPID_MANUFACTURER_NAME_TOMTOM_

INTERNATIONAL_BV

HCI_LMP_COMPID_MANUFACTURER_NAME_

FUGOO_INC

HCI_LMP_COMPID_MANUFACTURER_NAME_KEISER_

CORPORATION

HCI_LMP_COMPID_MANUFACTURER_NAME_BANG_

AND_OLUFSEN_AS

HCI_LMP_COMPID_MANUFACTURER_NAME_PLUS_

LOCATIONS_SYSTEMS_PTY_LTD

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 323 of 737 January 10, 2014

HCI_LMP_COMPID_MANUFACTURER_NAME_

UBIQUITOUS_COMPUTING_TECH_CORP

HCI_LMP_COMPID_MANUFACTURER_NAME_

INNOVATIVE_YACHTTER_SOLUTIONS

LMP_Subversion The LMP sub-version number. These are defined by each

manufacturer.

etQoS_Setup_Complete_Event

This event indicates the completion of the process of setting up QoS with the remote

Bluetooth device for the specified ACL connection, and returns the parameters for this

setup, if successful.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Flags;

 Byte_t Service_Type;

 DWord_t Token_Rate;

 DWord_t Peak_Bandwidth;

 DWord_t Latency;

 DWord_t Delay_Variation;

} HCI_QoS_Setup_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Flags (reserved for future use)

Service_Type The type of service to establish. Possible values are:

HCI_QOS_SERVICE_TYPE_NO_TRAFFIC

HCI_QOS_SERVICE_TYPE_BEST_EFFORT

HCI_QOS_SERVICE_TYPE_GUARANTEED

Token_Rate Token Rate in bytes per second.

Peak_Bandwidth Peak Bandwidth in bytes per second.

Latency Latency in microseconds.

Delay_Variation Delay Variation in microseconds.

etHardware_Error_Event

This event indicates that some type of Bluetooth device hardware failure has occurred.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 324 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Hardware_Code;

} HCI_Hardware_Error_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Hardware_Code An implementation-specific code. See documentation

accompanying the particular hardware.

etFlush_Occurred_Event

This event indicates that, for the specified ACL connection, the current user data to be

transmitted has been dropped. This could result from the flush command, or be due to the

automatic flush.

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

} HCI_Flush_Occurred_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle The connection that was flushed.

etRole_Change_Event

This event indicates that the current Bluetooth role related to the particular connection has

changed. This event only occurs when both the remote and local Bluetooth devices have

completed their role changes.

Return Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 Byte_t New_Role;

} HCI_Role_Change_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

BD_ADDR Address of the Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 325 of 737 January 10, 2014

New_Role New Role for this device. Possible values are:

HCI_CURRENT_ROLE_MASTER

HCI_CURRENT_ROLE_SLAVE

etNumber_Of_Completed_Packets_Event

This event is used by the Host Controller to indicate to the Host how many HCI Data

Packets have been completed (transmitted or flushed) for each Connection Handle since

the previous Number Of Completed Packets event was sent to the Host. This means that

the corresponding buffer space has been freed in the Host Controller.

Return Structure:

This event can return multiple pieces of connection information. The overall return is described

by the following structure.

typedef struct

{

 Byte_t Number_of_Handles;

 HCI_Number_Of_Completed_Packets_Data_t HCI_Number_Of_Completed_Packets_Data[1];

} HCI_Number_Of_Completed_Packets_Event_Data_t;

The array HCI_Number_Of_Completed_Packets_Data[] is an array of the following structures, one

for each connection.

typedef struct

{

 Word_t Connection_Handle;

 Word_t HC_Num_Of_Completed_Packets;

} HCI_Number_Of_Completed_Packets_Data_t;

Event Parameters:

Number_of_Handles Number of entries in the array.

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

HC_Num_Of_Completed_Packets Number of packets which have been processed for this

connection.

etMode_Change_Event

This event indicates when the device associated with an ACL connection changes between

Active, Hold, Sniff and Park mode.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 326 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Current_Mode;

 Word_t Interval;

} HCI_Mode_Change_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Current_Mode The current mode of the device associated with

Connection_Handle. Possible values are:

HCI_CURRENT_MODE_ACTIVE_MODE

HCI_CURRENT_MODE_HOLD_MODE

HCI_CURRENT_MODE_SNIFF_MODE

HCI_CURRENT_MODE_PARK_MODE

Interval Length of time to wait in the indicated mode. Values are

number of baseband slots (0.625 msec), with a range of 0

(0x0000) to 40.9 sec (0xFFFF).

etReturn_Link_Keys_Event

This event is used by the Host Controller to send the Host one or more stored Link Keys.

Zero or more instances of this event will occur after the Read_Stored_Link_Key

command. When there are no link keys stored, no Return Link Keys events will be

returned. When there are link keys stored, the number of link keys returned in each

Return Link Keys event is implementation specific.

Return Structure:

The top-level return structure is as follows:

typedef struct

{

 Byte_t Num_Keys;

 HCI_Return_Link_Keys_Data_t HCI_Return_Link_Keys_Data[1];

} HCI_Return_Link_Keys_Event_Data_t;

Each item in the array HCI_Return_Link_Keys_Data[] is a BD_ADDR – Link Key pair structure

defined as follows:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 327 of 737 January 10, 2014

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Link_Key_t Link_Key;

} HCI_Return_Link_Keys_Data_t;

Event Parameters:

Num_Keys Number of items in the array (at least one).

BD_ADDR Address of the Bluetooth device.

Link_Key Associated Link Key.

etPIN_Code_Request_Event

This event indicates that a PIN code is required to create a new link key. The Host must

respond using either the PIN Code Request Reply or the PIN Code Request Negative

Reply command, depending on whether the Host can provide the Host Controller with a

PIN code or not. Note: If the PIN Code Request event is masked away, then the Host

Controller will assume that the Host has no PIN Code.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} HCI_PIN_Code_Request_Event_Data_t;

Event Parameters:

BD_ADDR Address of the device that a new link key is being created for.

etLink_Key_Request_Event

This event indicates that a Link Key is required for the connection with the device

specified in BD_ADDR. If the Host has the requested stored Link Key, then the Host will

pass the requested Key to the Host Controller using the Link_Key_Request_Reply

Command. If the Host does not have the requested stored Link Key, then the Host will

use the Link_Key_Request_Negative_Reply Command to indicate to the Host Control-ler

that the Host does not have the requested key. Note: If the Link Key Request event is

masked away, then the Host Controller will assume that the Host has no additional link

keys.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} HCI_Link_Key_Request_Event_Data_t;

Event Parameters:

BD_ADDR Address of the device that is requesting a new link key.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 328 of 737 January 10, 2014

etLink_Key_Notification_Event

This event indicates to the Host that a new Link Key has been created for the connection

with the device specified in BD_ADDR. The Host can save this new Link Key in its own

storage for future use. Also, the Host can decided to store the Link Key in the Host

Controller’s Link Key Storage by using the Write_Stored_Link_Key command.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Link_Key_t Link_Key;

 Byte_t Key_Type;

} HCI_Link_Key_Notification_Event_Data_t;

Event Parameters:

BD_ADDR Address of the device for which the new link key has been

created.

Link_Key The new link key.

Key_Type This field is only valid if the Bluetooth device is using HCI

specification 1.1 or later, rather than 1.0B.

etLoopback_Command_Event

This event is used to send back all HCI command packets when the device is in loopback

mode.

Return Structure:

typedef struct

{

 Word_t HCI_Command_Packet_Length;

 Byte_t HCI_Command_Packet_Data[1];

} HCI_Loopback_Command_Event_Data_t;

Event Parameters:

HCI_Command_Packet_Length Number of bytes in the packet data.

HCI_Command_Packet_Data Actual command packet data.

etData_Buffer_Overflow_Event

This event indicates that the Host Controller’s data buffers have been overflowed. This

can occur if the Host has sent more packets than allowed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 329 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Link_Type;

} HCI_Data_Buffer_Overflow_Event_Data_t;

Event Parameters:

Link_Type Whether the overflow was on an ACL or SCO link. Possible

values are:

HCI_LINK_TYPE_SCO_CONNECTION

HCI_LINK_TYPE_ACL_CONNECTION

etMax_Slots_Change_Event

This event notifies the Host about the LMP_Max_Slots parameter when the value of this

parameter changes. It will be sent each time the value of the LMP_Max_Slots parameter

changes, as long as there is at least one connection to another device.

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

 Byte_t LMP_Max_Slots;

} HCI_Max_Slots_Change_Event_Data_t;

Event Parameters:

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

LMP_Max_Slots Maximum number of slots allowed for baseband packets.

etRead_Clock_Offset_Complete_Event

This event indicates the completion of the process of obtaining the Clock Offset

information of the remote Bluetooth device for an ACL connection, and if successful,

returns the value.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Word_t Clock_Offset;

} HCI_Read_Clock_Offset_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 330 of 737 January 10, 2014

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

etConnection_Packet_Type_Changed_Event

This event is used to indicate that the process has completed of changing which packet

types can be used for the connection. This allows current connections to be dynamically

modified to support different types of user data.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Word_t Packet_Type;

} HCI_Connection_Packet_Type_Changed_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Unique identifier for the connection returned in the Connection

Complete event associated with the HCI_Create_Connection

command.

Packet_Type Which packet types the Link Manager shall use for the ACL

link. This can be an ORing of multiple packet types. The

currently defined packet types are –

For ACL Links:

HCI_PACKET_ACL_TYPE_DM1

HCI_PACKET_ACL_TYPE_DH1

HCI_PACKET_ACL_TYPE_DM3

HCI_PACKET_ACL_TYPE_DH3

HCI_PACKET_ACL_TYPE_DM5

HCI_PACKET_ACL_TYPE_DH5

Bluetooth Version 2.0

HCI_PACKET_ACL_TYPE_2_DH1_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH1_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH3_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_2_DH5_MAY_NOT_BE_USED

HCI_PACKET_ACL_TYPE_3_DH5_MAY_NOT_BE_USED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 331 of 737 January 10, 2014

 For SCO Links:

HCI_PACKET_SCO_TYPE_HV1

HCI_PACKET_SCO_TYPE_HV2

HCI_PACKET_SCO_TYPE_HV3

etQoS_Violation_Event

This event indicates that the Link Manager is unable to provide the current QoS

requirement for the connection. The Host chooses what action should be done as a result.

The Host can reissue QoS_Setup command to renegotiate the QoS setting for the

connection.

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

} HCI_QoS_Violation_Event_Data_t;

Event Parameters:

Connection_Handle The identifier for the ACL connection with the QoS violation.

etPage_Scan_Mode_Change_Event

This event indicates that a remote Bluetooth device has successfully changed the

Page_Scan_Mode.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Mode;

} HCI_Page_Scan_Mode_Change_Event_Data_t;

Event Parameters:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Mode The new Page Scan Mode. Possible values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 332 of 737 January 10, 2014

etPage_Scan_Repetition_Mode_Change_Event

This event indicates that the remote Bluetooth device has successfully changed the

Page_Scan_Repetition_Mode.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

} HCI_Page_Scan_Repetition_Mode_Change_Event_Data_t;

Event Parameters:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode New repetition mode. Possible values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 333 of 737 January 10, 2014

etFlow_Specification_Complete_Event

This event informs the Host about the Quality of Service for the ACL connection the

Controller is able to support.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Flags;

 Byte_t Flow_Direction;

 Byte_t Service_Type;

 DWord_t Token_Rate;

 DWord_t Token_Bucket_Size;

 DWord_t Peak_Bandwidth;

 DWord_t Access_Latency;

} HCI_Flow_Specification_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Connection_Handle Connection Handle used to identify for which ACL

connection the Flow is specified.

Flags Reserved for future use.

Flow_Direction Outgoing or incoming flow over the ACL connection.

Possible values are:

HCI_FLOW_SPECIFICATION_FLOW_DIRECTION_O

UTGOING_FLOW

HCI_FLOW_SPECIFICATION_FLOW_DIRECTION_

INCOMING_FLOW

Service_Type No traffic, best effort, or guaranteed. Possible values are:

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_NO_T

RAFFIC

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_BEST_E

FFORT

HCI_FLOW_SPECIFICATION_SERVICE_TYPE_

GUARANTEED

Token_Rate The token rate in octets per second.

Token_Bucket_Size Token bucket size in octets.

Peak_Bandwidth Peak bandwidth in octets per second.

Access_Latency Access latency in microseconds.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 334 of 737 January 10, 2014

etInquiry_Result_With_RSSI_Event

This event indicates that a Bluetooth device or multiple Bluetooth devices have responded

so far during the current Inquiry process with an RSSI value. The following structure

represents the data returned for one inquiry result with RSSI information. The event result

will contain an array of these structures, preceded by a one-byte quantity Num_Responses.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

 Byte_t RSSI;

} HCI_Inquiry_Result_With_RSSI_Data_t;

Event Parameters:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the remote

device supports. The currently defined values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Period_Mode Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Class_of_Device Bit mask list of features that determine the class of device

for this Bluetooth device. See the

HCI_Read_Class_of_Device command for a complete

listing of feature bits.

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if

the offset value is valid

RSSI RSSI value in dBm from -127 to +20

etRead_Remote_Extended_Features_Complete_Event

This event is used to indicate the completion of the process of the Link Manager obtaining

the remote extended LMP features of the remote device specified by the connection

handle event parameter.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 335 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Page_Number;

 Byte_t Maximum_Page_Number;

 LMP_Features_t Extended_LMP_Features;

} HCI_Read_Remote_Extended_Features_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Connection_Handle Connection Handle used to identify the connection between

two Bluetooth devices.

Page_Number Normal LMP features as returned by

HCI_Read_Local_Supported_Features (if 0) or the

corresponding page of features (non-zero).

Maximum_Page_Number The highest features page number which contains non-zero

bits for the local device.

Extended_LMP_Features Bit map of requested page of LMP features. Defined bit

numbers are:

Bluetooth Version 1.1

HCI_LMP_FEATURE_THREE_SLOT_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_FIVE_SLOT_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_ENCRYPTION_BIT_NUMBER

HCI_LMP_FEATURE_SLOT_OFFSET_BIT_NUMBER

HCI_LMP_FEATURE_TIMING_ACCURACY_BIT_NUMBER

HCI_LMP_FEATURE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_HOLD_MODE_BIT_NUMBER

HCI_LMP_FEATURE_SNIFF_MODE_BIT_NUMBER

HCI_LMP_FEATURE_PARK_MODE_BIT_NUMBER

HCI_LMP_FEATURE_RSSI_BIT_NUMBER

HCI_LMP_FEATURE_CHANNEL_QUALITY_DRIVEN_

DATA_RATE_BIT_NUMBER

HCI_LMP_FEATURE_SCO_LINK_BIT_NUMBER

HCI_LMP_FEATURE_HV2_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_HV3_PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_U_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_A_LAW_LOG_BIT_NUMBER

HCI_LMP_FEATURE_CVSD_BIT_NUMBER

HCI_LMP_FEATURE_PAGING_SCHEME_BIT_NUMBER

HCI_LMP_FEATURE_POWER_CONTROL_BIT_NUMBER

Bluetooth Version 1.2

HCI_LMP_FEATURE_ROLE_SWITCH_BIT_NUMBER

HCI_LMP_FEATURE_PARK_STATE_BIT_NUMBER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 336 of 737 January 10, 2014

HCI_LMP_FEATURE_POWER_CONTROL_REQUESTS_

BIT_NUMBER

HCI_LMP_FEATURE_PAGING_PARAMETER_

NEGOTIATION_BIT_NUMBER

HCI_LMP_FEATURE_TRANSPARENT_SYNCHRONOUS_

DATA_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_LEAST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MIDDLE_

BIT_BIT_NUMBER

HCI_LMP_FEATURE_FLOW_CONTROL_LAG_MOST_

SIGNIFICANT_BIT_BIT_NUMBER

HCI_LMP_FEATURE_BROADCAST_ENCRYPTION_BIT_

NUMBER

HCI_LMP_FEATURE_ENHANCED_INQUIRY_SCAN_BIT_N

UMBER

HCI_LMP_FEATURE_INTERLACED_INQUIRY_SCAN_

BIT_NUMBER

HCI_LMP_FEATURE_INTERLACED_PAGE_SCAN_BIT_

NUMBER

HCI_LMP_FEATURE_RSSI_WITH_INQUIRY_RESULTS_

BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_SCO_LINKS_EV3_

PACKETS_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_EV4_PACKETS_BIT_

NUMBER

HCI_LMP_FEATURE_EXTENDED_EV5_PACKETS_BIT_

NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_SLAVE_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_CAPABLE_

MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_AFH_

CLASSIFICATION_MASTER_BIT_NUMBER

HCI_LMP_FEATURE_EXTENDED_FEATURES_BIT_

NUMBER

Useful macros defined for manipulation of LMP Features are:

COMPARE_LMP_FEATURES(feats1, feats2)

SET_FEATURES_BIT(feats, bitnumb)

RESET_FEATURES_BIT(feats, bitnum)

TEST_FEATURES_BIT(feats, bitnum)

etSynchronous_Connection_Complete_Event

This event indicates to both the Hosts that a new Synchronous connection has been

established.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 337 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 BD_ADDR_t BD_ADDR;

 Byte_t Link_Type;

 Byte_t Transmission_Interval;

 Byte_t Retransmission_Window;

 Word_t Rx_Packet_Length;

 Word_t Tx_Packet_Length;

 Byte_t Air_Mode;

} HCI_Synchronous_Connection_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes

Connection_Handle Connection Handle used to identify the connection between two

Bluetooth devices.

BD_ADDR Address of the Bluetooth device.

Link_Type SCO or eSCO connection. Possible values are:

HCI_LINK_TYPE_SCO_CONNECTION

HCI_LINK_TYPE_ESCO_CONNECTION

Transmission_Interval Time between two consecutive eSCO instants measured in slots.

Must be zero for SCO links.

Retransmission_Window The size of the retransmission window measured in slots. Must

be zero for SCO links.

Rx_Packet_Length Length in bytes of the eSCO payload in the receive direction.

Must be zero for SCO links.

Tx_Packet_Length Length in bytes of the eSCO payload in the transmit direction.

Must be zero for SCO links.

Air_Mode Parameter describing air mode settings. Possible values are:

HCI_AIR_MODE_FORMAT_U_LAW

HCI_AIR_MODE_FORMAT_A_LAW

HCI_AIR_MODE_FORMAT_CVSD

HCI_AIR_MODE_FORMAT_TRANSPARENT_DATA

etSynchronous_Connection_Changed_Event

This event indicates to the Host that an existing Synchronous connection has been

reconfigured. This event also indicates to the initiating Host (if the change was host

initiated) if the issued command failed or was successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 338 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Transmission_Interval;

 Byte_t Retransmission_Window;

 Word_t Rx_Packet_Length;

 Word_t Tx_Packet_Length;

} HCI_Synchronous_Connection_Changed_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Connection_Handle Connection Handle used to identify the connection between two

Bluetooth devices.

Transmission_Interval Time between two consecutive SCO/eSCO instants measured in

slots.

Retransmission_Window The size of the retransmission window measured in slots. Must

be zero for SCO links.

Rx_Packet_Length Length in bytes of the SCO/eSCO payload in the receive

direction.

Tx_Packet_Length Length in bytes of the SCO/eSCO payload in the transmit

direction.

etSniff_Subrating_Event

Indicates that the device associated with Connection_Handle has either enabled sniff

subrating or sniff subrating parameters have changed.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Word_t Maximum_Transmit_Latency;

 Word_t Maximum_Receive_Latency;

 Word_t Minimum_Remote_Timeout;

 Word_t Minimum_Local_Timeout;

} HCI_Sniff_Subrating_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Connection_Handle Connection Handle used to identify the connection between two

Bluetooth devices.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 339 of 737 January 10, 2014

Maximum_Transmit_Latency Max latency for data transmitted from local to remote

device.

Maximum_Receive_Latency Max latency for data received by local from the remote

device.

Minimum_Remote_Timeout Base sniff subrate timeout that remote device should use.

Expressed in baseband slots.

Minimum_Local_Timeout Base sniff subrate, in baseband slots, that local device will use.

etExtended_Inquiry_Result_Event

Indicates that BR/EDR controller has responded during inquiry process with extended

inquiry results. Sent from controller to host upon reception of Extended Inquiry Response

from a remote device. This event is only generated when Inquiry_Mode was set to 0x02

of last Write_Inquiry_Mode command.

Return Structure:

typedef struct

{

 Byte_t Num_Responses;

 HCI_Extended_Inquiry_Result_Data_t HCI_Inquiry_Result_Data;

} HCI_Extended_Inquiry_Result_Event_Data_t;

Event Parameters:

Num_Responses Number of responses from the inquiry, Extended Inquiry Result

event always has this set to 0x01.
HCI_Inquiry_Result_Data Extended inquiry response data as defined in the Specification.

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Reserved;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

 Byte_t RSSI;

 Extended_Inquiry_Response_Data_t Extended_Inquiry_Response;

} HCI_Extended_Inquiry_Result_Data_t;

etEncryption_Key_Refresh_Complete_Event

Indicates that encryption key was refreshed on the given connection handle.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 340 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

} HCI_Encryption_Key_Refresh_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Connection_Handle Connection Handle used to identify the connection between two

Bluetooth devices.

etIO_Capability_Request_Event

Indicates that the IO capabilities of the host are required for Simple Pairing.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} HCI_IO_Capability_Request_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth address of the remote device involved in the Simple

Pairing.

etIO_Capability_Response_Event

Indicates that IO capabilities from remote device have been received.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t IO_Capability;

 Byte_t OOB_Data_Present;

 Byte_t Authentication_Requirements;

} HCI_IO_Capability_Response_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth device address of the remote device whose IO

capabilities have been received.

IO_Capability This value is the received IO_Capability and may be one of the

following (all others reserved):
 0x00 : DisplayOnly

 0x01 : DisplayYesNo

 0x02 : KeyboardOnly

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 341 of 737 January 10, 2014

 0x03 : NoInputNoOutput

OOB_Data_Present Value indicating the OOB Data present and may be one of the

following values (all others reserved):

 0x00 : OOB authentication data not present

 0x01 : OOB authentication data from remote device present

Authentication_Requirements Contains the authentication requirements and may be one of the

following (all others reserved):

 0x00 : MITM Protection Not Required –No Bonding

 0x01 : MITM Protection Required – No Bonding

 0x02:MITM Protection Not Required – Dedicated Bonding

 0x03 : MITM Protection Required – Dedicated Bonding

 0x04 : MITM Protection Not Required – General Bonding

 0x05 : MITM Protection Required – General Bonding

etUser_Confirmation_Request_Event

This event occurs when user confirmation the number value in the event parameter

Numeric_Value is required.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 DWord_t Numeric_Value;

} HCI_User_Confirmation_Request_Event_Data_t;

 Event Parameters:

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

Numeric_Value The numeric value in the range 0 – 999999 (decimal) that needs

confirmation.

etUser_Passkey_Request_Event

Indicates that a passkey is required as part of Simple Pairing.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} HCI_User_Passkey_Request_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 342 of 737 January 10, 2014

etRemote_OOB_Data_Request_Event

Indicates that Simple Pairing Hash C and the Simple Pairing Randomizer R is required for

Secure Simple Pairing.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

} HCI_Remote_OOB_Data_Request_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

etSimple_Pairing_Complete_Event

Indicates that Simple Pairing has completed with the status returned in Status event

parameter.

Return Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

} HCI_Simple_Pairing_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

etLink_Supervision_Timeout_Changed_Event

This event notifies a slave’s host that the slave’s controller has had it Link Supervision

Timeout parameter changed.

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

 Word_t Link_Supervision_Timeout;

} HCI_Link_Supervision_Timeout_Changed_Event_Data_t;

 Event Parameters:

Connection_Handle Connection handle whose Link Supervision Timeout parameter

has changed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 343 of 737 January 10, 2014

Link_Supervision_Timeout The new Link Supervision Timeout parameter value in number

of baseband slots.

etEnhanced_Flush_Complete_Event

Indicates that for the specified handle an Enhanced Flush has completed.

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

} HCI_Enhanced_Flush_Complete_Event_Data_t;

Event Parameters:

Connection_Handle Connection Handle used to identify the connection between two

Bluetooth devices.

etUser_Passkey_Notification_Event

Used to provide a passkey for display to user as part of Simple Pairing.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 DWord_t Passkey;

} HCI_User_Passkey_Notification_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

Passkey The passkey to be displayed, in range 0 – 999999 (decimal).

etKeypress_Notification_Event

Sent after passkey notification has been received by remote device whose Bluetooth

device address is BD_ADDR.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Notification_Type;

} HCI_Keypress_Notification_Event_Data_t;

Event Parameters:

BD_ADDR Bluetooth device address of the remote device involved in

Simple Pairing.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 344 of 737 January 10, 2014

Notification_Type Type of notification which may be one of the following (all others

reserverd):

 0x00 : Passkey entry started

 0x01 : Passkey digit entered

 0x02 : Passkey digit erased

 0x03 : Passkey cleared

 0x04 : Passkey entry completed

etRemote_Host_Supported_Features_Notification_Event

Returns the LMP extended features page which contains host features.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 LMP_Features_t Host_Supported_Features;

} HCI_Remote_Host_Supported_Features_Notification_Event_Data_t;

Event Parameters:

BD_ADDR Address of the remote device.

Host_Supported_Features Bitmap of host supported features page of LMP extended features.

etPhysical_Link_Complete_Event

Indicates to the host that a new physical link has been established.

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Physical_Link_Handle;

} HCI_Physical_Link_Complete_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Physical_Link_Handle Handle identifying the physical link that has been established.

etChannel_Selected_Event

Indicates that link information data is available to be read using Read Local Amp ASSOC

command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 345 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Physical_Link_Handle;

} HCI_Channel_Selected_Event_Data_t;

 Event Parameters:

Physical_Link_Handle Handle of the physical link.

etDisconnection_Physical_Link_Complete_Event

Occurs when the physical link identified by Physical_Link_Handle is terminated.

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Physical_Link_Handle;

 Byte_t Reason;

} HCI_Disconnection_Physical_Link_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Physical_Link_Handle Handle of the physical link that was terminated.

Reason Reason that the physical link was terminated, specified in Error

Code section of the Bluetooth Specification.

etPhysical_Link_Loss_Early_Warning_Event

Occurs when there is indication that the physical link indentified by

Physical_Link_Handle may be disrupted.

Return Structure:

typedef struct

{

 Byte_t Physical_Link_Handle;

 Byte_t Link_Loss_Reason;

} HCI_Physical_Link_Loss_Early_Warning_Event_Data_t;

 Event Parameters:

Physical_Link_Handle Handle of the physical link that may be disrupted.

Reason Value indicating the reason for this event. May be one of the

following (all others reserved):

 0x00 : Unknown

 0x01 : Range related

 0x02 : Bandwidth related

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 346 of 737 January 10, 2014

 0x03 : Resolving conflict

 0x04 : Interference

etPhysical_Link_Recovery_Event

Indicates that whatever caused a previous etPhysical_Link_Loss_Early_Warning_Event

has now been cleared.

Return Structure:

typedef struct

{

 Byte_t Physical_Link_Handle

} HCI_Physical_Link_Recovery_Event_Data_t;

Event Parameters:

Physical_Link_Handle Handle of the physical link to which this pertains.

etLogical_Link_Complete_Event

Indicates to both end whether a Logical Link was successfully established or not.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Logical_Link_Handle;

 Byte_t Physical_Link_Handle;

 Byte_t Tx_Flow_Spec_ID;

} HCI_Logical_Link_Complete_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Logical_Link_Handle Handle of Logical Link to be used to identify a connection

between two controllers.

Physical_Link_Handle Handle of the physical link over which the logical link has been

established.

Tx_Flow_Spec_ID Flow Spec ID of the newly created Logical Link.

etDisconnection_Logical_Link_Complete_Event

Occurs when a Logical Link on the local controller is terminated.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 347 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Logical_Link_Handle;

 Byte_t Reason;

} HCI_Disconnection_Logical_Link_Complete_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Logical_Link_Handle Handle of the Logical Link that was terminated.

Reason Reason, defined in Bluetooth Specification Error Codes, for the

termination.

etFlow_Spec_Modify_Complete_Event

Indicates that a Flow Spec Modify command has completed.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Handle;

} HCI_Flow_Spec_Modify_Complete_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Handle Connection handle if receiving controller is a BR/EDR

Controller, Logical Link Handle if receiver is AMP Controller

or if it is a connection between BR/EDR controllers with

communicating AMPS.

etNumber_Of_Completed_Data_Blocks_Event

Indicates to the host HCI ACL Data Packets completed and data block buffers freed
for each handle since previous etNumber_Of_Completed_Data_Blocks_Event

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 348 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t Total_Num_Data_Blocks;

 Byte_t Number_of_Handles;

 HCI_Number_Of_Completed_Data_Blocks_Data_t

HCI_Number_Of_Completed_Data_Blocks_Data[1];

} HCI_Number_Of_Completed_Data_Blocks_Event_Data_t;

 Event Parameters:

Total_Num_Data_Blocks If 0 indicates the size of the buffer pool may have changed. If

non-zero indicates the number of free data block buffers in the

Controller.

Number_of_Handles Number of handles included in this event.

HCI_Number_Of_Completed_Data_Blocks_Data[1] Contains for each handle the number of

completed packets and freed blocks since the previous

etNumber_Of_Completed_Data_Blocks_Event

typedef struct
{

 Word_t Handle;

 Word_t Num_Of_Completed_Packets;

 Word_t Num_Of_Completed_Blocks;

} HCI_Number_Of_Completed_Data_Blocks_Data_t;

etShort_Range_Mode_Change_Complete_Event

Occurs after a notification has been made to the Controller to change the Short Range

Mode.

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Physical_Link_Handle;

 Byte_t Short_Range_Mode_State;

} HCI_Short_Range_Mode_Change_Complete_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Physical_Link_Handle Handle of physical link to which change occurred.

Short_Range_Mode_State The state of the Short Range Mode (0 – Disabled, 1 – Enable).

etAMP_Status_Change_Event

Indicates that the AMP status has changed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 349 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t AMP_Status;

} HCI_AMP_Status_Change_Event_Data_t;

Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

AMP_Status The new AMP status. See HCI_Read_Local_AMP_Info

parameter listing for the possible values.

etAMP_Start_Test_Event

Occurs when HCI_AMP_Test_Command has completed and data is ready to be sent or

received.

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Test_Scenario;

} HCI_AMP_Start_Test_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Test_Scenario The scenario of the currently running test as defined in the Test

Commands section of the PAL Specification. May be one of the

following (all others reserved):

 0x01 : Transmit Single Frames

0x02 : Receive frames

etAMP_Test_End_Event

Indicates that AMP controller has sent/received number of frames/burst configured

Return Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Test_Scenario;

} HCI_AMP_Test_End_Event_Data_t;

 Event Parameters:

Status Status of this event. Zero (0) indicates event completed OK.

Values from 0x01 to 0xFF are HCI status codes.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 350 of 737 January 10, 2014

Test_Scenario The scenario of the running test. May be one of the following

(all others reserved):

 0x01 : Transmit Single Frames

0x02 : Receive frames

etAMP_Receiver_Report_Event

The receiver report received by the tester from the AMP at interval configured by

HCI_Enable_AMP_Receiver_Reports command.

Return Structure:

typedef struct

{

 Byte_t Controller_Type;

 Byte_t Reason;

 DWord_t Event_Type;

 Word_t Number_Of_Frames;

 Word_t Number_Of_Error_Frames;

 DWord_t Number_Of_Bits;

 DWord_t Number_Of_Error_Bits;

} HCI_AMP_Receiver_Report_Event_Data_t;

 Event Parameters:

Controller_Type The number for the controller. See Bluetooth Assigned

Numbers.

Reason Reasons for the report. Must be one of the following (all others

reserved):

 0x00 : Configured Interval Report

 0x01 : Test Ended Report

Event_Type The type of the event. Must be one of the following (all others

reserved):

 0x00 : Frames Received Report

 0x01 : Frames Received and bits in error report (optional)

Number_Of_Frames The number of frames received so far.

Number_Of_Error_Frames The number of frames with bit errors received so far.

Number_Of_Bits Number of bits received so far. Set to 0x00000000 if

Event_Type is not 0x01.

Number_Of_Error_Bits Number of error bits received so far. Set to 0x00000000 if

Event_Type is not 0x01.

etPlatform_Specific_Event

Event type for platform specific events.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 351 of 737 January 10, 2014

Return Structure:

typedef struct

{

 DWord_t Platform_Event_Type;

 void *Platform_Event_Data;

} HCI_Platform_Specific_Event_Data_t;

 Event Parameters:

Platform_Event_Type The type of the platform specific event

Platform_Event_Data Void pointer for the platform specific event data.

2.2.12 HCI LE Meta Event Sub-events

The table below lists the HCI LE Meta sub-events supported by the current version of the

Bluetooth Stack Protocol API. Each event’s parameters are further described in text below. The

events are an enumeration instance of the enumeration type: HCI_LE_Meta_Event_Type_t.

Subevent Description

meConnection_Complete_Event Indicates that a new connection has been created.

meAdvertising_Report_Event Indicates that a Bluetooth device or multiple devices

have responded to an active scan or received some

information during a passive scan.

meConnection_Update_Complete_Event Indicates that the controller has updated the

connection parameters.

meRead_Remote_Used_Features_Compl

ete_Event

Indicates the result of a Remote used feature request

to a remote Bluetooth device.

meLong_Term_Key_Request Indicates master device is trying to encrypt or re-

encrypt the link and is requesting the long term key

from the host.

meConnection_Complete_Event

This event indicates that a connection has been completed.

Return Structure:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 352 of 737 January 10, 2014

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Byte_t Role;

 Byte_t Peer_Address_Type;

 BD_ADDR_t Peer_Address;

 Word_t Conn_Interval;

 Word_t Conn_Latency;

 Word_t Supervision_Timeout;

 Byte_t Master_Clock_Accuracy;

} HCI_LE_Connection_Complete_Event_Data_t;

Event Parameters:

Status Contains the result connection attempt (success or fail)

Connection_Handle Handle that identifies the connection created (success)

Role Determines role of device in connection. Possible values are:

HCI_LE_ROLE_IS_MASTER

HCI_LE_ROLE_IS_SLAVE

Peer_Address_Type Indicates type of address of peer. Possible values are:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

Peer_Address Contains the device address of the peer device.

Conn_Interval Contains the interval of the connection.

Conn_Latency Contains the latency for this connection.

Supervision_Timeout Contains the supervision timeout.

Master_Clock_Accuracy Contains the accuracy of the master clock. Possible values are:

HCI_LE_MASTER_CLOCK_ACCURACY_500_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_250_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_150_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_100_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_75_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_50_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_30_PPM

HCI_LE_MASTER_CLOCK_ACCURACY_20_PPM

meAdvertising_Report_Event

This event indicates that a response to a scan has been received.

Return Structure:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 353 of 737 January 10, 2014

typedef struct

{

 Byte_t Num_Responses;

 HCI_LE_Advertising_Report_Data_t HCI_LE_Advertising_Report_Data[1];

} HCI_LE_Advertising_Report_Event_Data_t;

Event Parameters:

Num_Responses Number of devices responding to the scan

HCI_LE_Advertising_Report_Data An array of Num_Responses size that contains the

reporting data from the devices. This array will contain

zero (or more) entries. The total number of entries is

given by the Num_Reponses member. Each entry is of

the following structure:

typedef struct

{

 Byte_t Event_Type;

 Byte_t Address_Type;

 BD_ADDR_t Address;

 Byte_t Data_Length;

 Advertising_Data_t Data;

 Byte_t RSSI;

} HCI_LE_Advertising_Report_Data_t;

 Where,

 Event_Type has the following possible values:

HCI_LE_ADVERTISING_REPORT_EVENT_

TYPE_CONNECTABLE_

UNDIRECTED

HCI_LE_ADVERTISING_REPORT_EVENT_

TYPE_CONNECTABLE_DIRECTED

HCI_LE_ADVERTISING_REPORT_EVENT_

TYPE_SCANNABLE_UNDIRECTED

HCI_LE_ADVERTISING_REPORT_EVENT_

TYPE_NONCONNECTABLE_

UNDIRECTED

HCI_LE_ADVERTISING_REPORT_EVENT_

TYPE_SCAN_RESPONSE

 Address_Type has the following possible values:

HCI_LE_ADDRESS_TYPE_PUBLIC

HCI_LE_ADDRESS_TYPE_RANDOM

 Data_Length specifies the total number of

advertising data bytes contained in the Data member.

 Data contains the advertising data returned from the

peer device.

 RSSI contains the peer devices RSSI value.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 354 of 737 January 10, 2014

meConnection_Update_Complete_Event

This event indicates the completion of the updating of the connection parameters.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 Word_t Conn_Interval;

 Word_t Conn_Latency;

 Word_t Supervision_Timeout;

} HCI_LE_Connection_Update_Complete_Event_Data_t;

 Event Parameters:

Status Determines whether the command was completed successfully.

Connection_Handle Handle to identify the connection that was updated.

Conn_Interval Contains the current connection’s interval.

Conn_Latency Contains the current connection’s latency.

Surpervision_Timeout Contains the current connection’s supervision timeout.

meRead_Remote_Used_Features_Complete_Event

This event indicates the completion of the reading of features supported by a remote

device.

Return Structure:

typedef struct

{

 Byte_t Status;

 Word_t Connection_Handle;

 LE_Features_t LE_Features;

} HCI_LE_Read_Remote_Used_Features_Complete_Event_Data_t;

 Event Parameters:

Status Determines whether the command was completed successfully.

Connection_Handle Handle to identify the connection created.

LE_Features Bit Mask List of used LE features.

meLong_Term_Key_Request_Event

This event indicates the request of a long term key from the host for a specific peer device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 355 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t Connection_Handle;

 Random_Number_t Random_Number;

 Word_t Encrypted_Diversifier;

} HCI_LE_Long_Term_Key_Request_Event_Data_t;

 Event Parameters:

Connection_Handle Handle to identify the connection.

Random_Number A 64 bit random number.

Encrypted_Diversifier 16 bit diversifier.

2.3 L2CAP API

L2CAP provides connection-oriented and connectionless data services to upper layer protocols

with protocol multiplexing capability, segmentation and reassembly operation, and group

abstractions. L2CAP permits higher level protocols and applications to transmit and receive

L2CAP data packets up to 64 kilobytes in length. This section is divided into three subsections:

2.3.1 covers the L2CAP service primitives, 2.3.2 covers the L2CAP event functions andPrototype

and 2.3.3 covers the L2CAP events. The actual prototypes and constants outlined in this section

can be found in the L2CAPAPI.H header file in the Bluetopia distribution.

2.3.1 L2CAP Service Primitives

The available service primitives are accessed via the functions listed in the table below, and are

described in the text that follows.

Function Description

L2CA_Set_Timer_Values Set timers used to control operation of the stack.

L2CA_Get_Timer_Values Retrieve timers that control stack operation.

L2CA_Connect_Request Create a logical L2CAP connection.

L2CA_Connect_Response Respond to an L2CAP connection indication.

L2CA_Config_Request Configure a channel prior to sending any data.

L2CA_Config_Response Respond to an L2CAP configuration indication.

L2CA_Disconnect_Request Break a logical L2CAP connection.

L2CA_Disconnect_Response Respond to a L2CAP disconnection indication.

L2CA_Data_Write Send data over a connection.

L2CA_Enhanced_Data_Write Send data over a connection (optionally

specifying queuing parameters).

L2CA_Fixed_Channel_Data_Write Send data to a connected device over a fixed

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 356 of 737 January 10, 2014

channel.

L2CA_Enhanced_Fixed_Channel_Data_Writ

e

Send data to a connected device over a fixed

channel (optionally specifying queuing

parameters).

L2CA_Group_Data_Write Send data to a group.

L2CA_Ping Send an L2CA echo request.

L2CA_Get_Info Request the value of a Bluetooth device

parameter.

L2CA_Connection_Parameter_Update_

Request

Request connection parameter update.

L2CA_Connection_Parameter_Update_

Response

Respond to a connection parameter update.

L2CA_Group_Create Create a group in order to send and receive

connectionless data from other devices.

L2CA_Group_Close Close out a group.

L2CA_Group_Add_Member Add a Bluetooth device to a group.

L2CA_Group_Remove_Member Remove a Bluetooth device from a group.

L2CA_Get_Group_Membership Obtain a list of members to a group.

L2CA_Enable_CLT Enable reception of group messages.

L2CA_Disable_CLT Disable reception of group messages.

L2CA_Flush_Channel_Data Flush queued L2CAP data.

L2CA_Get_Current_Channel_Configuration Retrieve configuration information on a channel.

L2CA_Get_Link_Connection_Configuration Queries the current Link Connection

Request/Response Configuration.

L2CA_Set_Link_Connection_Configuration Changes the current

L2CA_Set_Link_Connection_Configuration.

L2CA_Get_Channel_Queue_Threshold Retrieves the L2CAP Channel Queing Threshold

information for the Bluetooth Stack L2CAP

Module.

L2CA_Set_Channel_Queue_Threshold Changes the L2CAP Channel Queing Threshold

information for the Bluetooth Stack L2CAP

Module.

L2CA_Register_PSM Registers an L2CAP callback function (for a

PSM).

L2CA_Un_Register_PSM Un-registers a previously register L2CAP

callback function (for a PSM).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 357 of 737 January 10, 2014

L2CA_Register_Fixed_Channel Registers an L2CAP callback function (for a

fixed channel).

L2CA_Un_Register_Fixed_Channel Un-registers a previously register L2CAP

callback function (for a fixed channel).

L2CA_Set_Timer_Values

Set timer values that are used to control operation of the stack.

Prototype:

int BTPSAPI L2CA_Set_Timer_Values(unsigned int BluetoothStackID,

L2CA_Timer_Values_t *L2CA_Timer_Values)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Timer_Values Stack control timer values. This is the structure defined as:

typedef struct

{

 unsigned int RTXTimerVal;

 unsigned int ERTXTimerVal;

 unsigned int IdleTimerVal;

 unsigned int ConfigStateTimerVal;

 unsigned int ReceiveSegmentTimerVal;

} L2CA_Timer_Values_t;

The timers that are provided in this structure can be adjusted to

provide appropriate timing for the profile being implemented.

The timer values are specified in seconds. Timers

RTXTimerVal and ERTXTimerVal are defined in the L2CAP

specifications. Refer to the specification for information on

these timers. The IdleTimerVal is added to support the idea of

Client and Server L2CAP connections. L2CAP connections are

established by Clients to Servers. At the time that the ACL

connection is to be terminated, the Client should be the one to

initiate the disconnection of the ACL link. When an L2CAP

server denotes that no CIDs are open on an ACL link, a timer of

value IdleTimerVal is started to allow the Client time to

disconnect the ACL link. If the Client fails to disconnect the

ACL link that the expiration of this timer, the server will then

perform the disconnection. If this timer is set to a value of Zero,

then the Server will attempt to disconnect the ACL when the

last L2CAP channel is released. The ConfigStateTimerVal is

used to control the amount of time that the stack is allowed to be

in the Config State. If the configuration process is not complete

at the expiration of this timer, the connection will be terminated.

The ReceiveSegmentTimerVal is used to control the time that

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 358 of 737 January 10, 2014

the stack will wait for the next segmented data packet to arrive.

If the stack is waiting on a continuation information during the

recombination of packets at the time this timer expires, the

collected data will be discarded and an Error Event will be

issued. The following constants for each timer define the range

of values that each timer may be set:

L2CAP_RTX_TIMER_MINIMUM_VALUE

L2CAP_RTX_TIMER_MAXIMUM_VALUE

L2CAP_RTX_TIMER_DEFAULT_VALUE

L2CAP_ERTX_TIMER_MINIMUM_VALUE

L2CAP_ERTX_TIMER_MAXIMUM_VALUE

L2CAP_ERTX_TIMER_DEFAULT_VALUE

L2CAP_IDLE_TIMER_MINIMUM_VALUE

L2CAP_IDLE_TIMER_MAXIMUM_VALUE

L2CAP_IDLE_TIMER_DEFAULT_VALUE

L2CAP_CONFIG_TIMER_MINIMUM_VALUE

L2CAP_CONFIG_TIMER_MAXIMUM_VALUE

L2CAP_CONFIG_TIMER_DEFAULT_VALUE

L2CAP_RECEIVE_TIMER_MINIMUM_VALUE

L2CAP_RECEIVE_TIMER_MAXIMUM_VALUE

L2CAP_RECEIVE_TIMER_DEFAULT_VALUE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Timer_Values

Retrieve the timers which control the operation of the stack.

Prototype:

int BTPSAPI L2CA_Get_Timer_Values(unsigned int BluetoothStackID,

L2CA_Timer_Values_t *L2CA_Timer_Values)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 359 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Timer_Values Stack control timer values. This is the structure defined as:

typedef struct

{

 unsigned int RTXTimerVal;

 unsigned int ERTXTimerVal;

 unsigned int IdleTimerVal;

 unsigned int ConfigStateTimerVal;

 unsigned int ReceiveSegmentTimerVal;

} L2CA_Timer_Values_t;

See description of these timers in the Set function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Connect_Request

This function is responsible for requesting the creation of a Logical L2CAP Connection

with the specified Bluetooth device address. This function returns a positive, non-zero

Local Channel Identifier (LCID) if the L2CAP Connection Request was issued

successfully, or a negative, return error code indicating an error.

Prototype:

int BTPSAPI L2CA_Connect_Request(unsigned int BluetoothStackID, BD_ADDR_t

BD_ADDR, Word_t PSM, L2CA_Event_Callback_t L2CA_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is to be established.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 360 of 737 January 10, 2014

PSM Protocol/Service Multiplexer identifier of the remote device to

which the logical channel connection is to be made.

L2CA_Event_Callback Pointer to a callback function to be used by the L2CAP layer to

dispatch L2CAP Event information for this connection.

CallbackParameter User defined value to be used by the L2CAP layer as an input

parameter for all callbacks.

Return:

Positive non-zero value if function was successful. The values represent the Connection

Identifier (CID) that identifies the channel created.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CONNECTION_STATE

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_ADDING_CID_INFORMATION

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etConnect_Confirmation

etTimeout_Indication

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Connect_Response

This function is used when responding to an L2CA_Connect_Indication Event.

Prototype:

int BTPSAPI L2CA_Connect_Response(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Identifier, Word_t LCID, Word_t Response,

Word_t Status);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is to be established. The BD_ADDR is obtained

from the L2CA_Connect_Indication event.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 361 of 737 January 10, 2014

Identifier L2CAP assigned number used to match requests with responses.

The Identifier value is obtained from the

L2CA_Connect_Indication event.

LCID Local CID value used by the L2CAP layer to reference the

logical channel being requested. The LCID value is obtained

from the L2CA_Connect_Indication event.

Response User supplied response to the connection request. The

connection is accepted, rejected or pended by the value of this

parameter. The currently defines response values are:

L2CAP_CONNECT_RESPONSE_RESPONSE_SUCCESSFUL
L2CAP_CONNECT_RESPONSE_RESPONSE_PENDING

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_PSM_NOT_REGISTERED

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_SECURITY_BLOCK

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_NO_RESOURCES

Status The Status parameter only has significance when the

Connection Pending response is provided and is used to provide

extra information about the status of the connection. The

currently defined status values are:

L2CAP_CONNECT_RESPONSE_STATUS_NO_FURTHER_INFORMATION

L2CAP_CONNECT_RESPONSE_STATUS_AUTHENTICATION_PENDING

L2CAP_CONNECT_RESPONSE_STATUS_AUTHORIZATION_PENDING

Return:

Zero (0) if successful submitting the Connect Response. This does not mean that the

connect response has been delivered, but that the response was successfully submitted for

delivery.

Negative if an Error occurred and the Response was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etTimeout_Indication

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 362 of 737 January 10, 2014

L2CA_Config_Request

This function is used to issue a request to configure a channel. Channel configuration

must be performed and successfully completed prior to the transfer of any user data over

the channel. The configuration options to be negotiated for the channel are specified in

the L2CA_Config_Request structure. Options that are not specified will be interpreted as

the default value. The LinkTO value specifies the suggested Link Timeout value to be

used for the CONNECTION. This value will only be used if it is less than the current

Link Timeout setting.

Prototype:

int BTPSAPI L2CA_Config_Request(unsigned int BluetoothStackID, Word_t LCID,

Word_t LinkTO, L2CA_Config_Request_t *ConfigRequest);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value referencing the logical channel being

configures.

LinkTO Suggested Baseband Link Timeout value to be used for the

connection.

ConfigRequest Structure containing the configuration parameters to be

negotiated.

typedef struct

{

 Word_t Option_Flags;

 Word_t InMTU;

 Word_t OutFlushTO;

 L2CA_Flow_Spec_t OutFlow;

 L2CA_Mode_Info_t ModeInfo;

 Byte_t FCS_Option;

 L2CA_Extended_Flow_Spec_t ExtendedFlowSpec;

 Word_t ExtendedWindowSize;

} L2CA_Config_Request_t;

where, Option_Flags is a bit list. Possible bit values are:

L2CA_CONFIG_OPTION_FLAG_MTU

L2CA_CONFIG_OPTION_FLAG_FLUSH_TIMEOUT

L2CA_CONFIG_OPTION_FLAG_QOS

L2CA_CONFIG_OPTION_FLAG_MODE_INFO

L2CA_CONFIG_OPTION_FLAG_FCS_OPTION

L2CA_CONFIG_OPTION_FLAG_EXTENDED_FLOW_SPEC

L2CA_CONFIG_OPTION_FLAG_EXTENDED_WINDOW

_SIZE

L2CA_CONFIG_OPTION_FLAG_CONTINUATION

and, the L2CA_Flow_Spec_t structure is defined as follows:

typedef struct

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 363 of 737 January 10, 2014

{

 Byte_t Flags;

 Byte_t ServiceType;

 DWord_t TokenRate;

 DWord_t TokenBucketSize;

 DWord_t PeakBandwidth;

 DWord_t Latency;

 DWord_t DelayVariation;

} L2CA_Flow_Spec_t;

and, the L2CA_Extended_Flow_Spec_t structure is defined as

follows:

typedef

{

 Byte_t Identifier;

 Byte_t ServiceType;

 Word_t MaxSDU;

 DWord_t SDUInterArrivalTime;

 DWord_t AccessLatency;

 DWord_t FlushTimeout;

} L2CA_Extended_Flow_Spec_t;

Response User supplied response to the connection request. The

connection is accepted, rejected or pended by the value of this

parameter. The currently defined response types are:

L2CAP_CONNECT_RESPONSE_RESPONSE_SUCCESSFUL

L2CAP_CONNECT_RESPONSE_RESPONSE_PENDING

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_PSM_NOT_REGISTERED

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_SECURITY_BLOCK

L2CAP_CONNECT_RESPONSE_RESPONSE_REFUSED_NO_RESOURCES

Status The Status parameter only has significance when the

Connection Pending response is provided and is used to provide

extra information about the status of the connection. The

currently defined response types are:

L2CAP_CONNECT_STATUS_NO_FURTHER_INFORMATION

L2CAP_CONNECT_STATUS_AUTHENTICATION_PENDING

L2CAP_CONNECT_STATUS_AUTHORIZATION_PENDING

Return:

Zero (0) if successful submitting the Connect Response. This does not mean that the

connect response has been delivered, but that the response was successfully submitted for

delivery.

Negative if an Error occurred and the Response was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_INVALID_FLUSH_TIMEOUT_VALUE

BTPS_ERROR_INVALID_STATE_FOR_CONFIG

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 364 of 737 January 10, 2014

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etConfig_Confirmation

etTimeout_Indication

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Config_Response

This function is used when responding to an L2CA_Config_Indication Event.

Prototype:

int BTPSAPI L2CA_Config_Response(unsigned int BluetoothStackID, Word_t LCID,

Word_t Result, L2CA_Config_Response_t *ConfigResponse);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value referencing the logical channel being

configured.

Result Parameter that indicates the result of the Configuration Request.

The currently defined Result values are:

L2CAP_CONFIGURE_RESPONSE_RESULT_SUCCESS

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_UNACCEPTABLE

_PARAMETERS

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_REJECTED_NO_REASON

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_UNKNOWN_OPTIONS

L2CAP_CONFIGURE_RESPONSE_RESULT_TIMEOUT

ConfigResponse Structure containing the configuration parameter being

negotiated.

typedef struct

{

 Word_t Option_Flags;

 Word_t OutMTU;

 Word_t InFlushTO;

 L2CA_Flow_Spec_t InFlow;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 365 of 737 January 10, 2014

 L2CA_Mode_Info_t ModeInfo;

 Byte_t FCS_Option;

 L2CA_Extended_Flow_Spec_t ExtendedFlowSpec;

 Word_t ExtendedWindowSize;

} L2CA_Config_Response_t;

where, Option_Flags is a bit list. Possible bit values are:

L2CA_CONFIG_OPTION_FLAG_MTU

L2CA_CONFIG_OPTION_FLAG_FLUSH_TIMEOUT

L2CA_CONFIG_OPTION_FLAG_QOS

L2CA_CONFIG_OPTION_FLAG_MODE_INFO

L2CA_CONFIG_OPTION_FLAG_FCS_OPTION

L2CA_CONFIG_OPTION_FLAG_EXTENDED_FLOW_SPEC

L2CA_CONFIG_OPTION_FLAG_EXTENDED_WINDOW

_SIZE

L2CA_CONFIG_OPTION_FLAG_CONTINUATION

and, the L2CA_Flow_Spec_t structure is defined as follows:

typedef struct

{

 Byte_t Flags;

 Byte_t ServiceType;

 DWord_t TokenRate;

 DWord_t TokenBucketSize;

 DWord_t PeakBandwidth;

 DWord_t Latency;

 DWord_t DelayVariation;

} L2CA_Flow_Spec_t;

and, the L2CA_Extended_Flow_Spec_t structure is defined as

follows:

typedef

{

 Byte_t Identifier;

 Byte_t ServiceType;

 Word_t MaxSDU;

 DWord_t SDUInterArrivalTime;

 DWord_t AccessLatency;

 DWord_t FlushTimeout;

} L2CA_Extended_Flow_Spec_t;

Return:

Zero (0) if successful submitting the Configuration Response. This does not mean that the

configuration response has been delivered, but that the response was successfully

submitted for delivery.

Negative if an Error occurred and the Response was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 366 of 737 January 10, 2014

Possible Events:

etTimeout_Indication

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Disconnect_Request

This function is responsible for requesting a Disconnect of a Logical L2CAP Connection

with the specified Bluetooth device address. This function returns a Zero if the L2CAP

Disconnection Request was successfully submitted, or a negative return error code

indicating an error. When the Disconnect of the channel is complete, an

L2CA_Disconnect_Confirmation event will be issued.

Prototype:

int BTPSAPI L2CA_Disconnect_Request(unsigned int BluetoothStackID, Word_t LCID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value referencing the logical channel to be

disconnected.

Return:

Zero (0) if the disconnect request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etTimeout_Indication

etDisconnect_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 367 of 737 January 10, 2014

L2CA_Disconnect_Response

This function is used when responding to an L2CA_Disconnect_Indication Event. This

function must be called from within the callback for the L2CA_Disconnect_Indication. If

this function is not called from within the L2CA_Disconnect_Indication event callback,

the L2CAP layer will provide a response automatically.

Prototype:

int BTPSAPI L2CA_Disconnect_Response(unsigned int BluetoothStackID, Word_t LCID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value used by the L2CAP layer to reference the

logical channel to disconnect.

Return:

Zero (0) if successful submitting the Disconnect Response. This does not mean that the

Disconnect Response has been delivered, but that the Response was successfully

submitted for delivery.

Negative if an Error occurred and the Response was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etTimeout_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Data_Write

This function is used to send data over a specified channel.

Prototype:

int BTPSAPI L2CA_Data_Write(unsigned int BluetoothStackID, Word_t LCID,

Word_t Data_Length, Byte_t *Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 368 of 737 January 10, 2014

LCID Local CID value used by the L2CAP layer to reference the

logical channel on which to send the data.

Data_Length Number of characters to be sent over the channel.

Data Pointer to a buffer of data to be sent over the channel.

Return:

Zero (0) if successful submitting the Data for transmission.

Negative if an Error occurred and the Data was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_NEGOTIATED_MTU_EXCEEDED

BTPS_ERROR_CHANNEL_NOT_IN_OPEN_STATE

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Note that if this function returns the error code:

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

then this is a signal to the caller that the requested data could NOT be sent because the

requested data could not be queued in the outgoing L2CAP Queue (i.e. queuing criteria

was not met). The caller then, must wait for the etChannel_Buffer_Empty_Indication

Event before trying to send any more data. When this event is signaled, another attempt

can be made to send the data to the remote device.

Possible Events:

etData_Error_Indication

etDisconnect_Indication

etChannel_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Enhanced_Data_Write

This function is used to send data over a specified channel while optionally specifying

queuing parameters. This function is similar to the L2CA_Data_Write() function except

that this function allows the ability to specify optional queuing parameters. These queuing

parameters can specify the following:

- How deep the queue should be (by number of queued packets)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 369 of 737 January 10, 2014

This function provides two mechanisms when the (optional) queue thresholds are reached:

- Discard the oldest packet in the queue (and queue the specified packet)

- Do not queue the packet and inform the caller via a specific return value

Notes:

If this function is called with the QueueingParametes parameter set to NULL then this

function behaves EXACTLY like calling the L2CA_Data_Write() function (i.e. packet is

queued regardless).

If the L2CA_QUEUEING_FLAG_DISCARD_OLDEST is specified then this function will

discard the oldest packet in the queue if the queue threshold criteria is satisfied. This

allows a streaming-like mechanism to be implemented (i.e. the data will not back up, it

will just be discarded).

Prototype:

int BTPSAPI L2CA_Enhanced_Data_Write(unsigned int BluetoothStackID,

Word_t LCID, L2CA_Queueing_Parameters_t *QueueingParameters,

Word_t Data_Length, Byte_t *Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value used by the L2CAP layer to reference the

logical channel on which to send the data.

QueingParameters Optional pointer to a structure which describes the parameters

that dictate how the packet is queued. This structure is defined

as follows:

typedef struct

{

 DWord_t Flags;

 DWord_t QueueLimit;

 DWord_t LowThreshold;

} L2CA_Queueing_Parameters_t;

where, Flags is defined to be one of the following values:

L2CA_QUEUEING_FLAG_LIMIT_BY_PACKETS

L2CA_QUEUEING_FLAG_DISCARD_OLDEST

where, QueueLimit defines the maximum queue limit specified

in either number of packets or size (in bytes) depending on the

Flags member value.

where, LowThreshold defines the lower threshold limit that

must be reached before the

etChannel_Buffer_Empty_Indication

event is dispatched when the queue drains to the threshold limit

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 370 of 737 January 10, 2014

Data_Length Number of characters to be sent over the channel.

Data Pointer to a buffer of data to be sent over the channel.

Return:

Zero (0) if successful submitting the Data for transmission.

Negative if an Error occurred and the Data was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_NEGOTIATED_MTU_EXCEEDED

BTPS_ERROR_CHANNEL_NOT_IN_OPEN_STATE

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Note that if this function returns the error code:

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

then this is a signal to the caller that the requested data could NOT be sent because the

requested data could not be queued in the outgoing L2CAP Queue (i.e. queuing criteria

was not met). The caller then must wait for the etChannel_Buffer_Empty_Indication

Event before trying to send any more data. When this event is signaled, another attempt

can be made to send the data to the remote device.

Possible Events:

etData_Error_Indication

etDisconnect_Indication

etChannel_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Fixed_Channel_Data_Write

This function is used to send data over a specific fixed channel.

Prototype:

int BTPSAPI L2CA_Fixed_Channel_Data_Write(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t FCID, Word_t Data_Length, Byte_t *Data);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 371 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth protocol stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the device to send the specified

fixed channel data.

FCID Fixed channel ID that represents the fixed channel to send the

data. This value is not the actual fixed channel itself, rather this

a value that was returned from a successful call to the

L2CA_Register_Fixed_Channel function.

Data_Length Number of characters to be sent over the fixed channel.

Data Pointer to a buffer of data to be sent over the fixed channel.

Return:

Zero (0) if successful submitting the Data for transmission.

Negative if an Error occurred and the Data was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_DEVICE_NOT_CONNECTED

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

L2CA_Enhanced_Fixed_Channel_Data_Write

This function is used to send data over a specified fixed channel while optionally

specifying queuing parameters. This function is similar to the

L2CA_Fixed_Channel_Data_Write() function except that this function allows the ability

to specify optional queuing parameters. These queuing parameters can specify the

following:

- How deep the queue should be (by number of queued packets)

This function provides two mechanisms when the (optional) queue thresholds are reached:

- Discard the oldest packet in the queue (and queue the specified packet)

- Do not queue the packet and inform the caller via a specific return value

Notes:

If this function is called with the QueueingParameters parameter set to NULL then this

function behaves EXACTLY like calling the L2CA_Fixed_Channel_Write() function (i.e.

packet is queued regardless).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 372 of 737 January 10, 2014

If the L2CA_QUEUEING_FLAG_DISCARD_OLDEST is specified then this function will

discard the oldest packet in the queue if the queue threshold criteria is satisfied. This

allows a streaming-like mechanism to be implemented (i.e. the data will not back up, it

will just be discarded).

Prototype:

int BTPSAPI L2CA_Fixed_Channel_Data_Write(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t FCID,

L2CA_Queueing_Parameters_t *QueueingParameters,

Word_t Data_Length, Byte_t *Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the device to send the specified

fixed channel data.

FCID Fixed channel ID that represents the fixed channel to send the

data. This value is not the actual fixed channel itself, rather this

a value that was returned from a successful call to the

L2CA_Register_Fixed_Channel function.

QueueingParameters Optional pointer to a structure which describes the parameters

that dictate how the packet is queued. This structure is defined

as follows:

typedef struct

{

 DWord_t Flags;

 DWord_t QueueLimit;

 DWord_t LowThreshold;

} L2CA_Queueing_Parameters_t;

where, Flags is defined to be one of the following values:

L2CA_QUEUEING_FLAG_LIMIT_BY_PACKETS

L2CA_QUEUEING_FLAG_DISCARD_OLDEST

where, QueueLimit defines the maximum queue limit specified

in either number of packets or size (in bytes) depending on the

Flags member value.

where, LowThreshold defines the lower threshold limit that

must be reached before the

etFixed_Channel_Buffer_Empty_Indication

event is dispatched when the queue drains to the threshold limit

Data_Length Number of characters to be sent over the fixed channel.

Data Pointer to a buffer of data to be sent over the fixed channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 373 of 737 January 10, 2014

Return:

Zero (0) if successful submitting the Data for transmission.

Negative if an Error occurred and the Data was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_NEGOTIATED_MTU_EXCEEDED

BTPS_ERROR_CHANNEL_NOT_IN_OPEN_STATE

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Note that if this function returns the error code:

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

then this is a signal to the caller that the requested data could NOT be sent because the

requested data could not be queued in the outgoing L2CAP Queue (i.e. queuing criteria

was not met). The caller then must wait for the

etFixed_Channel_Buffer_Empty_Indication Event before trying to send any more data.

When this event is signaled, another attempt can be made to send the data to the remote

device.

Possible Events:

etFixed_Channel_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Group_Data_Write

This function is used to send data over a connectionless channel. This function makes a

‘best effort’ attempt to deliver the data to all members of the group.

Prototype:

int BTPSAPI L2CA_Group_Data_Write(unsigned int BluetoothStackID, Word_t LCID,

Word_t Data_Length, Byte_t *Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

LCID Local CID value used by the L2CAP layer to reference the

Group to which to send the data. This values is obtained from a

successful call to L2CA_Group_Create.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 374 of 737 January 10, 2014

Data_Length Number of characters to be sent to the group.

Data Pointer to a buffer of data to be sent to the group.

Return:

Zero (0) if successful submitting the Data for transmission.

Negative if an Error occurred and the Data was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_WRITING_DATA_TO_DEVICE

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_CONECTIONLESS_MTU_EXCEEDED

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

NOTE - If this function returns the Error Code: BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

then this is a signal to the caller that the requested data could NOT be sent because the

requested data could not be queued in the Outgoing L2CAP Queue. The caller then, must wait

for the etChannel_Buffer_Empty_Indication Event before trying to send any more data. When

this event is signaled, another attempt can be made to send the data to the remote device.

Possible Events:

etData_Error_Indication

etDisconnect_Indication

etChannel_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Ping

This function is used to send a Echo Request to a specified Bluetooth device. This

function allows a message to be sent with the Ping, to which the receiver will echo back to

the caller if the request is successful. If no message is to be sent with the request, the

Data_Length parameter must be 0.

Prototype:

int BTPSAPI L2CA_Ping(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

Word_t Data_Length, Byte_t *Data, L2CA_Event_Callback_t L2CA_Event_Callback,

unsigned long CallbackParameter);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 375 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is to be established.

Data_Length Number of characters to be sent with the Ping.

Data Pointer to a buffer of data to be sent with the Ping.

L2CA_Event_Callback Pointer to a callback function to be used by the L2CAP layer to

dispatch a reply to the Ping.

CallbackParameter User defined value to be used by the L2CAP layer as an input

parameter for the callbacks.

Return:

Positive, non-zero value if successful submitting the Ping Request.

Negative if an Error occurred and the Ping was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_MEMORY_ALLOCATION_ERROR

BTPS_ERROR_ADDING_CID_INFORMATION

Possible Events:

etEcho_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Info

This function is used to retrieve specific information from a specified Bluetooth device.

Prototype:

int BTPSAPI L2CA_Get_Info(unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

Word_t Info_Type, L2CA_Event_Callback_t L2CA_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 376 of 737 January 10, 2014

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is to be established.

InfoType Identifier of the information element to be retrieved. The

currently definesdInfotypes are:

L2CAP_INFORMATION_REQUEST_INFOTYPE_

CONNECTIONLESS_MTU

L2CAP_INFORMATION_REQUEST_INFOTYPE_

EXTENDED_FEATURE_MASK

L2CA_Event_Callback Pointer to a callback function to be used by the L2CAP layer to

dispatch a reply to the Info Request.

CallbackParameter User defined value to be used by the L2CAP layer as an input

parameter for the callbacks.

Return:

Positive, non zero value if successful submitting the Info Request Request.

Negative if an Error occurred and the Info Request was not submitted. Possible values

are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_ADDING_CID_INFORMATION

Possible Events:

etInformation_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Connection_Parameter_Update_Request

This function is used to request the remote device (LE master) update the connection

parameters. This function can only be issued by an LE slave and the local host must have

registered for the following fixed channel:

L2CAP_CHANNEL_IDENTIFIER_LE_SIGNALLING_CHANNEL

Prototype:

int BTPSAPI L2CA_Connection_Parameter_Update_Request(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Word_t IntervalMin,

Word_t IntervalMax, Word_t SlaveLatency, Word_t TimeoutMultiplier);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 377 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is already established.

IntervalMin Minimum value for the the connection interval. This should fall

within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

IntervalMax This should be greater than or equal to Conn_Interval_Min and

shall fall within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Both intervals follow the rule:

Time = N * 1.25 msec

SlaveLatency Slave latency for connection. This should be in range:

HCI_LE_CONNECTION_LATENCY_MINIMUM

HCI_LE_CONNECTION_LATENCY_MAXIMUM

TimeoutMultiplier Supervision timeout multiplier for LE link. This should be in

range:

HCI_LE_SUPERVISION_TIMEOUT_MINIMUM

HCI_LE_SUPERVISION_TIMEOUT_MAXIMUM

 The Supervision_Timeout follows the rule:

Time = N * 10 msec

Return:

Positive, non zero value if successful submitting the Connection Parameter Update

Request.

Negative if an Error occurred and the Connection Parameter Update Request was not

submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_ACTION_NOT_ALLOWED

BTPS_ERROR_NO_CALLBACK_REGISTERED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_ADDING_CID_INFORMATION

Possible Events:

etConnection_Parameter_Update_Confirmation

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 378 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Connection_Parameter_Update_Response

This function is used to respond to connection parameter upate request received from the

remote device (LE slave) to update the connection parameters. This function can only be

issued by an LE master and the local host must have registered for the following fixed

channel:

L2CAP_CHANNEL_IDENTIFIER_LE_SIGNALLING_CHANNEL

Prototype:

int BTPSAPI L2CA_Connection_Parameter_Update_Response(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Word_t Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which an L2CAP

logical channel is already established.

Result Result of the connection parameter update request. This will be

one of the following values:

L2CAP_CONNECTION_PARAMETER_UPDATE_

RESPONSE_RESULT_ACCEPTED

L2CAP_CONNECTION_PARAMETER_UPDATE_

RESPONSE_RESULT_REJECTED

Return:

Positive, non zero value if successful submitting the Connection Parameter Update

Response.

Negative if an Error occurred and the Connection Parameter Update Response was not

submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_ACTION_NOT_ALLOWED

BTPS_ERROR_NO_CALLBACK_REGISTERED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_IDENTIFIER_INFORMATION

BTPS_ERROR_ADDING_CID_INFORMATION

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 379 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Group_Create

This function is used to create a Group for the purpose of receiving Group Messages. The

PSM value is used to filter the group messages. All group messages received having a

matching PSM will be dispatched to the user if reception is enabled at the time the message is

received. The RxEnable flag is used to specify the initial state of the receiver.

Prototype:

int BTPSAPI L2CA_Group_Create(unsigned int BluetoothStackID, Word_t PSM,

Boolean_t RxEnabled, L2CA_Event_Callback_t L2CA_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

PSM Protocol/Service Multiplexer identifier of the Group messages

to be received.

RxEnabled Flag to controls the state of the receiver a creation. If this is

TRUE, reception of the group messages is enabled. If FALSE,

group messages are disabled.

L2CA_Event_Callback Pointer to a callback function to be used by the L2CAP layer to

dispatch group messages.

CallbackParameter User defined value to be used by the L2CAP layer as an input

parameter for the callbacks.

Return:

A positive, non-Zero value is returned after successfully creating the group. This value is

the Group CID and is used to identify the group when future modifications to the group

are made.

Negative if an Error occurred and the group was not created. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_ADDING_CID_INFORMATION

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etDisconnect_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 380 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Group_Close

This function is used to remove a Group and its members.

Prototype:

int BTPSAPI L2CA_Group_Close(unsigned int BluetoothStackID, Word_t CID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Connection Identifier that uniquely identifies the Group.

Return:

Zero (0) if successful removing the group.

Negative if an Error occurred and the group was not removed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_CID

Possible Events:

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Group_Add_Member

This function is used to add a member to a Group. If a connection to the specified device

does not exist when the function is called, an attempt to establish a connection will be

performed. The member is not added until a successful connection establishment has been

made. Notification of the addition of the member will be made via the Group Callback

function.

Prototype:

int BTPSAPI L2CA_Group_Add_Member(unsigned int BluetoothStackID, Word_t CID,

BD_ADDR_t BD_ADDR);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 381 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Connection Identifier that uniquely identifies the Group.

BD_ADDR Device address of the Bluetooth device to be added to the

group.

Return:

Zero (0) if the add member request was successfully submitted. Notification of the result

of the addition of the member will be received via the Group Callback function.

Negative if an Error occurred and the member was not added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_ADDING_CID_INFORMATION

BTPS_ERROR_GROUP_MEMBER_ALREADY_EXISTS

BTPS_ERROR_CID_NOT_GROUP_CID

BTPS_ERROR_INVALID_CID

Possible Events:

etGroup_Member_Status

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Group_Remove_Member

This function is used to remove a member to a Group.

Prototype:

int BTPSAPI L2CA_Group_Remove_Member(unsigned int BluetoothStackID,

Word_t CID, BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Connection Identifier that uniquely identifies the Group.

BD_ADDR Device address of the Bluetooth device to be removed from the

group.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 382 of 737 January 10, 2014

Return:

Zero (0) if the member was successfully removed.

Negative if an Error occurred and the member was not added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GROUP_MEMBER_NOT_FOUND

BTPS_ERROR_CID_NOT_GROUP_CID

BTPS_ERROR_INVALID_CID

Possible Events:

etDisconnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Group_Membership

This function is used to retrieve a list of members of a specified Group.

Prototype:

int BTPSAPI L2CA_Get_Group_Membership(unsigned int BluetoothStackID,

Word_t CID, unsigned int *Result, unsigned int *MemberCount, unsigned int BufferSize,

BD_ADDR_t *BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Connection Identifier that uniquely identifies the Group.

Result Pointer to an integer to receive status information for the

request. The currently defined result values are:

L2CAP_GROUP_MEMBERSHIP_RESPONSE_RESULT_SUCCESS

L2CAP_GROUP_MEMBERSHIP_RESPONSE_RESULT_FAILURE

MemberCount Pointer to an integer to receive a count of the number of

member entries that were moved to the BD_ADDR array.

BufferSize Size in Bytes of the BD_ADDR buffer that will receive the

array of member addresses.

BD_ADDR Pointer to an array of type BD_ADDR_t. The function will fill

the array with the device address of each member of the group.

Return:

Zero (0) if the member list was successfully created.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 383 of 737 January 10, 2014

Negative if an Error occurred and the member was not added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

BTPS_ERROR_CID_NOT_GROUP_CID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Enable_CLT

This function is used to enable the reception of Connectionless (Group) traffic.

Prototype:

int BTPSAPI L2CA_Enable_CLT(unsigned int BluetoothStackID, Word_t PSM);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

PSM Protocol/Service Multiplexer identifier of the Group PSM

message to be enabled.

Return:

Zero (0) if the traffic was successfully enabled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 384 of 737 January 10, 2014

L2CA_Disable_CLT

This function is used to disable the reception of Connectionless (Group) traffic.

Prototype:

int BTPSAPI L2CA_Disable_CLT(unsigned int BluetoothStackID, Word_t PSM);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

PSM Protocol/Service Multiplexer identifier of the Group PSM

message to be disabled.

Return:

Zero (0) if the traffic was successfully disabled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Flush_Channel_Data

This function is responsible for requesting that all queued L2CAP data for the specified

Channel be flushed. This function should only be called under extreme circumstances,

and normally need not be called. This function should be called when the caller has

determined (by some means) that L2CAP Data has been sent (locally) and NOT received

on the remote side AND the user wants to clear out any (potentially) buffered L2CAP

Data for the channel (such that it will not be sent when next allowable). This condition

can occur due to HCI Transport issues (infinite retransmits for example). This function

returns a Zero if the L2CAP Channel data for the specified Channel was deleted

successfully.

Prototype:

int BTPSAPI L2CA_Flush_Channel_Data(unsigned int BluetoothStackID, Word_t CID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Local CID value referencing the logical channel to be flushed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 385 of 737 January 10, 2014

Return:

Zero (0) if the channel flush was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_CID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Current_Channel_Configuration

This function is used retrieve configuration information for a specified channel.

Prototype:

int BTPSAPI L2CA_Get_Current_Channel_Configuration(unsigned int BluetoothStackID,

Word_t CID, L2CA_Config_Params_t *Channel_Config_Params);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

CID Channel Identifier.

Channel_Config_Params Pointer to a structure to receive the configuration information.

typedef struct

{

 Word_t OutMTU;

 Word_t InFlushTO;

 Word_t OutFlushTO;

 L2CA_Flow_Spec_t InFlow;

} L2CA_Config_Params_t;

where, the L2CA_Flow_Spec_t structure is defined as follows:

typedef struct

{

 Byte_t Flags;

 Byte_t ServiceType;

 DWord_t TokenRate;

 DWord_t TokenBucketSize;

 DWord_t PeakBandwidth;

 DWord_t Latency;

 DWord_t DelayVariation;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 386 of 737 January 10, 2014

} L2CA_Flow_Spec_t;

Return:

Zero (0) if the information was successfully transferred.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_CONNECTION_TO_DEVICE_LOST

BTPS_ERROR_INVALID_CID_TYPE

BTPS_ERROR_INVALID_CID

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Link_Connection_Configuration

Get Lower Link Connection request/response configuration. This function exists to allow

the programmer a method of determining how L2CAP is currently handling HCI ACL

connection requests (both when L2CAP originates the HCI ACL connection and when

L2CAP responds to remote HCI ACL requests). This functionality is provided to allow

programmers a means to control L2CAP in a Point to Multi-Point environment. The

default handling is that L2CAP doesn’t allow a Role Switch at connection setup. This

function allows the programmer to query/change this functionality if desired.

Prototype:

int BTPSAPI L2CA_Get_Link_Connection_Configuration(

unsigned int BluetoothStackID,

L2CA_Link_Connect_Params_t *L2CA_Link_Connect_Params)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Link_Connect_Params Stack connection configuration values. This is the structure

defined as:

typedef struct

{

 L2CA_Link_Connect_Request_Config_t

L2CA_Link_Connect_Request_Config;

 L2CA_Link_Connect_Response_Config_t

L2CA_Link_Connect_Response_Config;

} L2CA_Link_Connect_Params_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 387 of 737 January 10, 2014

The values that are provided in this structure can be adjusted to

change the way that L2CAP handles the requesting of lower

link connections (HCI ACL) and how L2CAP handles the

acceptance of lower link connections (HCI ACL). Changing

these values allows L2CAP to function in a Point to Multi-Point

environment. The possible values for the

L2CA_Link_Connect_Request_Config parameter are as follows:
cqNoRoleSwitch

cqAllowRoleSwitch

The default value is cqNoRoleSwitch which instructs L2CAP to

NOT allow a Role Switch to happen during an HCI ACL

connection (when L2CAP originates the connection). The

cqAllowRoleSwitch value would signal L2CAP to allow Role

Switching when a HCI Connection is established (again, only

when L2CAP originates the connection).

The possible values for the

L2CA_Link_Connect_Response_Config parameter are as follows:
csMaintainCurrentRole

csRequestRoleSwitch

csIgnoreConnectionRequest

The default value is csMaintainCurrentRole which instructs

L2CAP to NOT try to change the current Role when accepting a

HCI ACL Connection. The csRequestRoleSwitch value instructs

L2CAP to attempt to switch Roles whenever L2CAP accepts an

HCI ACL Connection. The csIgnoreConnectionRequest value

instructs L2CAP to NEVER accept ANY HCI Connections (or

reject them). This functionality would be used if there was

another entity handling the physical setup up HCI ACL

Connections (i.e. not L2CAP). It is envisioned that the

csIgnoreConnectionRequest value will rarely be used, however it

exists for applications that do not want L2CAP to handle

incoming HCI ACL Connection Requests.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 388 of 737 January 10, 2014

L2CA_Set_Link_Connection_Configuration

Set Lower Link Connection request/response configuration. This function exists to allow

the programmer a method of controlling how L2CAP handles HCI ACL connection

requests (both when L2CAP originates the HCI ACL connection and when L2CAP

responds to remote HCI ACL requests). This functionality is provided to allow

programmers a means to control L2CAP in a Point to Multi-Point environment. The

default handling is that L2CAP doesn’t allow a Role Switch at connection setup. This

function allows the programmer to change this functionality if desired.

Prototype:

int BTPSAPI L2CA_Set_Link_Connection_Configuration(unsigned int BluetoothStackID,

L2CA_Link_Connect_Params_t *L2CA_Link_Connect_Params)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Link_Connect_Params Stack connection configuration values. This is the structure

defined as:

typedef struct

{

 L2CA_Link_Connect_Request_Config_t

L2CA_Link_Connect_Request_Config;

 L2CA_Link_Connect_Response_Config_t

L2CA_Link_Connect_Response_Config;

} L2CA_Link_Connect_Params_t;

The values that are provided in this structure can be adjusted to

change the way that L2CAP handles the requesting of lower

link connections (HCI ACL) and how L2CAP handles the

acceptance of lower link connections (HCI ACL). Changing

these values allows L2CAP to function in a Point to Multi-Point

environment. The possible values for the

L2CA_Link_Connect_Request_Config parameter are as follows:
cqNoRoleSwitch

cqAllowRoleSwitch

The default value is cqNoRoleSwitch which instructs L2CAP to

NOT allow a Role Switch to happen during an HCI ACL

connection (when L2CAP originates the connection). The

cqAllowRoleSwitch value would signal L2CAP to allow Role

Switching when a HCI Connection is established (again, only

when L2CAP originates the connection).

The possible values for the

L2CA_Link_Connect_Response_Config parameter are as follows:
csMaintainCurrentRole

csRequestRoleSwitch

csIgnoreConnectionRequest

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 389 of 737 January 10, 2014

The default value is csMaintainCurrentRole which instructs

L2CAP to NOT try to change the current Role when accepting a

HCI ACL Connection. The csRequestRoleSwitch value instructs

L2CAP to attempt to switch Roles whenever L2CAP accepts an

HCI ACL Connection. The csIgnoreConnectionRequest value

instructs L2CAP to NEVER accept ANY HCI Connections (or

reject them). This functionality would be used if there was

another entity handling the physical setup up HCI ACL

Connections (i.e. not L2CAP). It is envisioned that the

csIgnoreConnectionRequest value will rarely be used, however it

exists for applications that do not want L2CAP to handle

incoming HCI ACL Connection Requests.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Link_Connection_State

The following function allows the caller to ascertain the current connection link state as it

pertains to a specific Bluetooth device. This information is useful to know if L2CAP is

currently utilizing the current link (either an incoming or outgoing connection).

Prototype:

int BTPSAPI L2CA_Get_Link_Connection_State(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR,

L2CA_Link_Connection_State_t *L2CA_Link_Connection_State)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

BD_ADDR Bluetooth device address of the Bluetooth link to query the

current state.

L2CA_Link_Connection_State Link connection state. This is one of the following values:

lcsDisconnected

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 390 of 737 January 10, 2014

lcsConnecting

lcsConnected

lcsDisconnecting

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Get_Channel_Queue_Threshold

This function retrieves the current L2CAP Channel Queing Threshold information for the

Bluetooth Stack L2CAP Module. This is used by the L2CAP module to limit the amount

of data that the L2CAP Module will buffer, per L2CAP channel, internally. This will help

alleviate the case where L2CAP always accepts data to be written when memory is

available, which can lead to complete memory allocation usage (in the future). Note, only

packets larger than SizeThreshold will be used to count towards DepthThreshold.

Prototype:

int BTPSAPI L2CA_Get_Channel_Queue_Threshold(unsigned int BluetoothStackID,

L2CA_Channel_Queue_Threshold_t *L2CA_Channel_Queue_Threshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Channel_Queue_Threshold The retrieved Channel Queue Threshold. The

SizeThreshold is the minimum size in bytes of an individual

L2CAP ACL Segment. The DepthThreshold is the number of

packets of SizeThreshold that are allowed. A DepthThreshold of

zero means that this functionality is disabled. The

LowQueueThreshold parameter specifies the lower threshold of

the number of packets in the queue that must be met before a

Channel empty indication event is dispatched.

 typedef struct

{

 unsigned int SizeThreshold;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 391 of 737 January 10, 2014

 unsigned int DepthThreshold;

 unsigned int LowQueueThreshold;

} L2CA_Channel_Queue_Threshold_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Set_Channel_Queue_Threshold

This function changes the current L2CAP Channel Queing Threshold information for the

Bluetooth Stack L2CAP Module. This is used by the L2CAP module to limit the amount

of data that the L2CAP Module will buffer, per L2CAP channel, internally. This will help

alleviate the case where L2CAP always accepts data to be written when memory is

available, which can lead to complete memory allocation usage (in the future). Note, only

packets larger than SizeThreshold will be used to count towards DepthThreshold.

Prototype:

int BTPSAPI L2CA_Set_Channel_Queue_Threshold(unsigned int BluetoothStackID,

L2CA_Channel_Queue_Threshold_t *L2CA_Channel_Queue_Threshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

L2CA_Channel_Queue_Threshold The L2CAP Channel Queing Threshold to change to.

The SizeThreshold is the minimum size in bytes of an

individual L2CAP ACL Segment. The DepthThreshold is the

number of packets of SizeThreshold that are allowed. A

DepthThreshold of zero means that this functionality is

disabled. The LowQueueThreshold parameter specifies the

lower threshold of the number of packets in the queue that must

be met before a Channel empty indication event is dispatched.

 typedef struct

{

 unsigned int SizeThreshold;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 392 of 737 January 10, 2014

 unsigned int DepthThreshold;

 unsigned int LowQueueThreshold;

} L2CA_Channel_Queue_Threshold_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.3.2 L2CAP Event Functions/Prototype

The first four functions are used to register and unregister event callbacks. The fifth function is a

Prototype for an event callback function.

L2CA_Register_PSM

This function is used to register an L2CAP callback function with the L2CAP layer

associated with the specified Bluetooth stack ID. The callback is used to handle incoming

L2CAP events destined for the specified PSM Number. This function returns a non-zero,

positive return value, which represents the L2CAP PSM callback ID, if successful. A

negative return value is returned if the function is unsuccessful. The caller can use the

return value from this function as the L2CAP_PSMID parameter for the

L2CA_Un_Register_PSM function, when the caller wants to Unregister the callback.

Prototype:

int BTPSAPI L2CA_Register_PSM(unsigned int BluetoothStackID, Word_t PSM,

L2CA_Event_Callback_t L2CA_Event_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth protocol stack via a

call to BSC_Initialize.

PSM Protocol/Service Multiplexer value to which this callback is to

be registered.

L2CA_EventCallback Function pointer to be used by the L2CAP layer to notify higher

layers of L2CAP events.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 393 of 737 January 10, 2014

CallbackParameter User defined value to be supplied as an input parameter for all

event callbacks.

Return:

Positive if function was successful. A positive return value represents a L2CAP_PSMID

that uniquely identifies the callback. This value is used in the L2CA_Un_Register_PSM

function.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_UNABLE_TO_REGISTER_PSM

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etConnect_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Un_Register_PSM

This function is used to un-register an L2CAP callback function with the L2CAP layer

associated with the specified Bluetooth stack ID. This function returns a value of zero if

successful. A negative return value is indicates the function was unsuccessful.

Prototype:

int BTPSAPI L2CA_Un_Register_PSM(unsigned int BluetoothStackID,

unsigned int L2CAP_PSMID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth protocol stack via a

call to BSC_Initialize.

L2CAP_PSMID PSMID value that uniquely identifies the callback function for a

PSM value. The L2CAP_PSMID supplied is the return value of

a successful call to the L2CA_Register_PSM function.

Return:

Zero (0) if function was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_UNABLE_TO_UNREGISTER_PSM

BTPS_ERROR_PSM_NOT_REGISTERED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 394 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Register_Fixed_Channel

This function is used to register an L2CAP callback function with the L2CAP layer

associated with the specified Bluetooth stack ID. This callback is used to handle incoming

L2CAP events destined for the specified fixed channel. This function returns a non-zero,

positive return value, which represents the L2CAP fixed channel ID, if successful. A

negative return value is returned if the function is unsuccessful. The caller can use the

return value from this function as the FCID parameter for the

L2CA_Un_Register_Fixed_Channel and the L2CA_Fixed_Channel_Data_Write

functions, when the caller wants to un-register the callback or send fixed channel data

(respectively).

Prototype:

int BTPSAPI L2CA_Register_Fixed_Channel(unsigned int BluetoothStackID,

Word_t FixedChannel, void *ChannelParameters,

L2CA_Event_Callback_t L2CA_Event_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth protocol stack via a

call to BSC_Initialize.

FixedChannel L2CAP fixed channel number to register. This value must be

greater than:

L2CAP_CHANNEL_IDENTIFIER_CONNECTIONLESS_

CHANNEL

and less than:

L2CAP_CHANNEL_IDENTIFIER_MINIMUM_

CHANNEL_IDENTIFIER

ChannelParameters Pointer to channel specific parameter information. Currently

this value is not used and should be passed as NULL.

L2CA_EventCallback Function pointer to be used by the L2CAP layer to notify higher

layers of L2CAP events.

CallbackParameter User defined value to be supplied as an input parameter for all

event callbacks.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 395 of 737 January 10, 2014

Return:

Positive if function was successful. A positive return value represents a FCID that

uniquely identifies the callback. This value is used in the

L2CA_Un_Register_Fixed_Channel function.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_UNABLE_TO_REGISTER_EVENT_CALLBACK

BTPS_ERROR_ADDING_CALLBACK_INFORMATION

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_FEATURE_NOT_AVAILABLE

Possible Events:

etFixed_Channel_Connect_Indication

etConnection_Parameter_Update_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Un_Register_Fixed_Channel

This function is used to un-register an L2CAP callback function with the L2CAP Layer

associated with the specified Bluetooth stack ID. This function returns a value of zero if

successful. A negative return value is indicates the function was unsuccessful.

Prototype:

int BTPSAPI L2CA_Un_Register_Fixed_Channel(unsigned int BluetoothStackID,

Word_t FCID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

FCID Fixed channel ID value that uniquely identifies the callback

function for a fixed channel. The FCID supplied is the return

value of a successful call to the L2CA_Register_Fixed_Channel

function.

Return:

Zero (0) if function was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_L2CAP_NOT_INITIALIZED

BTPS_ERROR_NO_CALLBACK_REGISTERED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 396 of 737 January 10, 2014

BTPS_ERROR_PSM_NOT_REGISTERED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

L2CA_Event_Callback_t

The callback function provides the L2CAP layer a means to inform the user about L2CAP

related events that occur. The event information is passed to the user in an

L2CA_Event_Data_t structure. This structure contains all the information about the event

that occurred.

Prototype:

void (BTPSAPI *L2CA_Event_Callback_t)(unsigned int BluetoothStackID,

L2CA_Event_Data_t *L2CA_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack on

which the event occurred.

L2CA_Event_Data Pointer to a structure that contains information about the event

that has occurred. This structure is of the form:

typedef struct

{

 L2CA_Event_Type_t L2CA_Event_Type;

 Word_t Event_Data_Length;

 union

 {

 L2CA_Connect_Indication_t

*L2CA_Connect_Indication;

 L2CA_Connect_Confirmation_t

*L2CA_Connect_Confirmation;

 L2CA_Config_Indication_t

*L2CA_Config_Indication;

 L2CA_Config_Confirmation_t

*L2CA_Config_Confirmation;

 L2CA_Disconnect_Indication_t

*L2CA_Disconnect_Indication;

 L2CA_Disconnect_Confirmation_t

*L2CA_Disconnect_Confirmation;

 L2CA_Echo_Confirmation_t

*L2CA_Echo_Confirmation;

 L2CA_Information_Confirmation_t

*L2CA_Information_Confirmation;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 397 of 737 January 10, 2014

 L2CA_Timeout_Indication_t

*L2CA_Timeout_Indication;

 L2CA_Data_Indication_t

*L2CA_Data_Indication;

 L2CA_Data_Error_Indication_t

*L2CA_Data_Error_Indication;

 L2CA_Group_Data_Indication_t

*L2CA_Group_Data_Indication;

 L2CA_Group_Member_Status_t

*L2CA_Group_Member_Status;

 L2CA_Channel_Buffer_Empty_Indication_t

*L2CA_Channel_Buffer_Empty_Indication;

 L2CA_Connection_Parameter_Update_Indication_t

*L2CA_Connection_Parameter_Update_Indication;

 L2CA_Connection_Parameter_Update_Confirmation_t

*L2CA_Connection_Parameter_Update_Confirmation;

 L2CA_Fixed_Channel_Connect_Indication_t

*L2CA_Fixed_Channel_Connect_Indication;

 L2CA_Fixed_Channel_Disconnect_Indication_t

*L2CA_Fixed_Channel_Disconnect_Indication;

 L2CA_Fixed_Channel_Data_Indication_t

*L2CA_Fixed_Channel_Data_Indication;

 } Event_Data;

} L2CA_Event_Data_t;

where, L2CA_Event_Type_t is an enumerated type with the

values listed in the table in section 2.3.3.

CallbackParameter User defined value to was supplied as an input parameter from a

prior L2CAP request.

2.3.3 L2CAP Events

The events that can be generated by the L2CAP portion of the Bluetooth Stack are listed in the

table below and are described in the text that follows.

Event Description

etConnect_Indication Notify the host of a connection request from a remote device.

etConnect_Confirmation Notify the host that a connection request has completed or is

pending.

etConfig_Indication Notify the host of a configuration request from a remote device.

etConfig_Confirmation Notify the host that the configuration request has completed.

etDisconnect_Indication Notify the host of a disconnection request from a remote device.

etDisconnect_Confirmation Notify the host that the disconnection request has completed.

etEcho_Confirmation Notify the host that an L2CA Ping request has completed.

etInformation_Confirmation Return the requested device information to the Host.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 398 of 737 January 10, 2014

etTimeout_Indication Notify the host that a response from a remote device has timed

out..

etData_Indication Notify the host of incoming L2CAP data.

etData_Error_Indication Notify the host of incoming L2CAP data error.

etGroup_Data_Indication Notify the host of incoming connectionless data.

etGroup_Member_Status Notify the host that a member has been added to a group.

etChannel_Buffer_Empty_

Indication

Notify the host that all buffered data has been sent to the device.

etConnection_Parameter_

Update_Indication

Notify the host of a received connection parameter update request

(fixed channel LE only).

etConnection_Parameter_

Update_Confirmation

Notify the host of a received connection parameter update

confirmation (fixed channel LE only).

etFixed_Channel_Connect_

Indication

Notify the host that a fixed channel is now connected to a specific

device (fixed channel only).

etFixed_Channel_

Disconnect_Indication

Notify the host that a fixed channel is now disconnected from a

specific device (fixed channel only).

etFixed_Channel_Data_

Indication

Notify the host that data has been received on a fixed channel

(fixed channel only).

etFixed_Channel_Buffer_E

mpty_Indication

Notify the host that all buffered data has been sent to the device

for the specified fixed channel.

etConnect_Indication

Notify the host of a connection request from a remote device.

Return Structure:

typedef struct

{

 Word_t PSM;

 Word_t LCID;

 Byte_t Identifier;

 BD_ADDR_t BD_ADDR;

 L2CAP_Extended_Feature_Mask_t ExtendedFeatures;

} L2CA_Connect_Indication_t;

Event Parameters:

PSM Protocol/Service Multiplexer value to which this callback is to

be registered.

LCID Local channel identifier.

Identifier Requestor’s identifier used to match up responses

BD_ADDR Address of the Bluetooth device requesting the connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 399 of 737 January 10, 2014

ExtendedFeatures The extended features of the device that is attempting to

connect. Access should be made using the following bit masks:

L2CAP_EXTENDED_FEATURE_FLOW_CONTROL_BIT_

NUMBER

L2CAP_EXTENDED_FEATURE_RETRANSMIT_

MODE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_BI_DIRECTIONAL_

QOS_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_ENHANCED_

RETRANSMISSION_MODE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_STREAMING_MODE_

BIT_NUMBER

L2CAP_EXTENDED_FEATURE_FCS_OPTION_BIT_

NUMBER

L2CAP_EXTENDED_FEATURE_ENHANCED_FLOW_

SPEC_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_FIXED_CHANNELS_

BIT_NUMBER

L2CAP_EXTENDED_FEATURE_EXTENDED_WINDOW_

SIZE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_UNICAST_DATA_

RECEPTION_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_MASK_EXTENSION_

BIT_NUMBER

 The structure definition:

typedef struct

{

 Byte_t Extended_Feature_Mask0;

 Byte_t Extended_Feature_Mask1;

 Byte_t Extended_Feature_Mask2;

 Byte_t Extended_Feature_Mask3;

} L2CAP_Extended_Feature_Mask_t;

etConnect_Confirmation

Notify the host that a connection request has completed or is pending.

Return Structure:

typedef struct

{

 Word_t LCID;

 Word_t Result;

 Word_t Status;

 L2CAP_Extended_Feature_Mask_t ExtendedFeatures;

} L2CA_Connect_Confirmation_t;

Event Parameters:

LCID Local channel identifier.

Result Result of the connection attempt. Possible values are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 400 of 737 January 10, 2014

L2CAP_CONNECT_RESULT_CONNECTION_

SUCCESSFUL

L2CAP_CONNECT_RESULT_CONNECTION_

PENDING

L2CAP_CONNECT_RESULT_CONNECTION_

REFUSED_PSM_NOT_REGISTERED

L2CAP_CONNECT_RESULT_CONNECTION_

REFUSED_SECURITY_RELATED

L2CAP_CONNECT_RESULT_CONNECTION_

TIMEOUT

Status If the Result indicates connection Pending, then this field

contains the reason for the hold up. Possible values are:

L2CAP_CONNECT_STATUS_NO_FURTHER_

INFORMATION

L2CAP_CONNECT_STATUS_AUTHENTICATION_

PENDING

L2CAP_CONNECT_STATUS_AUTHORIZATION_

PENDING

ExtendedFeatures The extended features of the device whose connection is

pending. Access should be made using the following bit masks:

L2CAP_EXTENDED_FEATURE_FLOW_CONTROL_BIT_

NUMBER

L2CAP_EXTENDED_FEATURE_RETRANSMIT_

MODE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_BI_DIRECTIONAL_

QOS_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_ENHANCED_

RETRANSMISSION_MODE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_STREAMING_MODE_

BIT_NUMBER

L2CAP_EXTENDED_FEATURE_FCS_OPTION_BIT_

NUMBER

L2CAP_EXTENDED_FEATURE_ENHANCED_FLOW_

SPEC_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_FIXED_CHANNELS_

BIT_NUMBER

L2CAP_EXTENDED_FEATURE_EXTENDED_WINDOW_

SIZE_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_UNICAST_DATA_

RECEPTION_BIT_NUMBER

L2CAP_EXTENDED_FEATURE_MASK_EXTENSION_

BIT_NUMBER

 The structure definition is:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 401 of 737 January 10, 2014

typedef struct

{

 Byte_t Extended_Feature_Mask0;

 Byte_t Extended_Feature_Mask1;

 Byte_t Extended_Feature_Mask2;

 Byte_t Extended_Feature_Mask3;

} L2CAP_Extended_Feature_Mask_t;

etConfig_Indication

Notify the host of a configuration request from a remote device.

Return Structure:

typedef struct

{

 Word_t LCID;

 Word_t Option_Flags;

 Word_t OutMTU;

 Word_t InFlushTO;

 L2CA_Flow_Spec_t InFlow;

 L2CA_Mode_Info_t ModeInfo;

 Byte_t FCS_Option;

 L2CA_Extended_Flow_Spec_t ExtendedFlowSpec;

 Word_t ExtendedWindowSize;

} L2CA_Config_Indication_t;

Event Parameters:

LCID Local channel identifier.

Option_Flags A bit list. Possible bit values are:

L2CA_CONFIG_OPTION_FLAG_MTU

L2CA_CONFIG_OPTION_FLAG_FLUSH_TIMEOUT

L2CA_CONFIG_OPTION_FLAG_QOS

L2CA_CONFIG_OPTION_FLAG_MODE_INFO

L2CA_CONFIG_OPTION_FLAG_FCS_OPTION

L2CA_CONFIG_OPTION_FLAG_EXTENDED_FLOW_SPEC

L2CA_CONFIG_OPTION_FLAG_EXTENDED_WINDOW_

SIZE

L2CA_CONFIG_OPTION_FLAG_CONTINUATION

OutMTU Maximum transmission unit that the remote unit will send

across this channel (maybe less or equal to the InMTU input

parameter).

InFlushTO Number of milliseconds before an L2CAP packet that cannot be

acknowl-edged at the physical layer is dropped. This value is

indicates the actual value that will be used for outgoing packets

and may be less than or equal to the OutFlushTO parameter

given as input.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 402 of 737 January 10, 2014

InFlow Quality of service parameters dealing with the traffic

characteristics of the agreed-upon outgoing data flow. This

structure is defined as follows:

typedef struct

{

 Byte_t Flags;

 Byte_t ServiceType;

 DWord_t TokenRate;

 DWord_t TokenBucketSize;

 DWord_t PeakBandwidth;

 DWord_t Latency;

 DWord_t DelayVariation;

} L2CA_Flow_Spec_t;

ModeInfo Specifies the requested operating mode of the L2CAP channel.

FCSOption Specifies the requested operating FCS mode of the L2CAP

channel.

ExtendedFlowSpec Specifies the requested extended Flow Specification. This

structure is defined as follows:

typedef

{

 Byte_t Identifier;

 Byte_t ServiceType;

 Word_t MaxSDU;

 DWord_t SDUInterArrivalTime;

 DWord_t AccessLatency;

 DWord_t FlushTimeout;

} L2CA_Extended_Flow_Spec_t;

ExtendedWindowSize Specifies the requested extended window size (ERTM modes).

etConfig_Confirmation

Notify the host that the configuration request has completed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 403 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t LCID;

 Word_t Result;

 Word_t Option_Flags;

 Word_t InMTU;

 Word_t OutFlushTO;

 L2CA_Flow_Spec_t OutFlow;

 L2CA_Mode_Info_t ModeInfo;

 Byte_t FCS_Option;

 L2CA_Extended_Flow_Spec_t ExtendedFlowSpec;

 Word_t ExtendedWindowSize;

} L2CA_Config_Confirmation_t;

Event Parameters:

LCID Local channel identifier.

Result Outcome of the configuration operation. Possible values are:

L2CAP_CONFIGURE_RESPONSE_RESULT_SUCCESS

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_

UNACCEPTABLE_PARAMETERS

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_

REJECTED_NO_REASON

L2CAP_CONFIGURE_RESPONSE_RESULT_FAILURE_

UNKNOWN_OPTIONS

L2CAP_CONFIGURE_RESPONSE_RESULT_TIMEOUT

Option_Flags A bit list. Possible bit values are:

L2CA_CONFIG_OPTION_FLAG_MTU

L2CA_CONFIG_OPTION_FLAG_FLUSH_TIMEOUT

L2CA_CONFIG_OPTION_FLAG_QOS

L2CA_CONFIG_OPTION_FLAG_MODE_INFO

L2CA_CONFIG_OPTION_FLAG_FCS_OPTION

L2CA_CONFIG_OPTION_FLAG_EXTENDED_FLOW_SPEC

L2CA_CONFIG_OPTION_FLAG_EXTENDED_WINDOW_

SIZE

L2CA_CONFIG_OPTION_FLAG_CONTINUATION

InMTU Maximum transmission unit that the remote unit will send

across this channel (maybe less or equal to the InMTU input

parameter).

OutFlushTO Number of milliseconds before an L2CAP packet that cannot be

acknowl-edged at the physical layer is dropped. This value is

indicates the actual value that will be used for outgoing packets

and may be less than or equal to the OutFlushTO parameter

given as input.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 404 of 737 January 10, 2014

OutFlow Quality of service parameters dealing with the traffic

characteristics of the agreed-upon outgoing data flow. This

structure is defined as follows:

typedef struct

{

 Byte_t Flags;

 Byte_t ServiceType;

 DWord_t TokenRate;

 DWord_t TokenBucketSize;

 DWord_t PeakBandwidth;

 DWord_t Latency;

 DWord_t DelayVariation;

} L2CA_Flow_Spec_t;

ModeInfo Specifies the requested operating mode of the L2CAP channel.

FCSOption Specifies the requested operating FCS mode of the L2CAP

channel.

ExtendedFlowSpec Specifies the requested extended Flow Specification. This

structure is defined as follows:

typedef

{

 Byte_t Identifier;

 Byte_t ServiceType;

 Word_t MaxSDU;

 DWord_t SDUInterArrivalTime;

 DWord_t AccessLatency;

 DWord_t FlushTimeout;

} L2CA_Extended_Flow_Spec_t;

ExtendedWindowSize Specifies the requested extended window size (ERTM modes).

etDisconnect_Indication

Notify the host of a disconnection request from a remote device.

Return Structure:

typedef struct

{

 Word_t LCID;

} L2CA_Disconnect_Indication_t;

Event Parameters:

LCID Local channel identifier.

etDisconnect_Confirmation

Notify the host that the disconnection request has completed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 405 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t Result;

 Word_t LCID;

} L2CA_Disconnect_Confirmation_t;

Event Parameters:

Result Disconnection action result. Possible values are:

L2CAP_DISCONNECT_RESPONSE_RESULT_SUCCESS

L2CAP_DISCONNECT_RESPONSE_RESULT_TIMEOUT

LCID Local channel identifier.

etTimeout_Indication

Notify the host that a response from a remote device has timed out. The handshake may

be retried as determined by the Bluetooh implemenation.

Return Structure:

typedef struct

{

 Word_t LCID;

} L2CA_Timeout_Indication_t;

Event Parameters:

LCID Local channel identifier.

etEcho_Confirmation

Notify the host that an L2CA Ping request has completed.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Word_t Result;

 Word_t Echo_Data_Length;

 Byte_t Variable_Data[1];

} L2CA_Echo_Confirmation_t;

Event Parameters:

BD_ADDR Bluetooth address of the remote device that participated in the

L2CAP Ping request.

Result Outcome of the Ping operation. Possible values are:

L2CAP_ECHO_REQUEST_RESULT_RESPONSE_RECEIVED

L2CAP_ECHO_REQUEST_RESULT_RESPONSE_TIMEOUT

Echo_Data_Length Number of bytes in the response, Variable_Data, array

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 406 of 737 January 10, 2014

Variable_Data Echo response data.

etInformation_Confirmation

Return the requested device information to the Host.

Return Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Word_t InfoType;

 Word_t Result;

 Byte_t Variable_Data[1];

} L2CA_Information_Confirmation_t;

Event Parameters:

BD_ADDR Bluetooth device address whose device information if being

returned.

InfoType Type of information returned. Possible values are:

L2CAP_INFORMATION_REQUEST_INFOTYPE_

CONNECTIONLESS_MTU

L2CAP_INFORMATION_REQUEST_INFOTYPE_

EXTENDED_FEATURE_MASK

Result Outcome of this operation. Possible values are:

L2CAP_INFORMATION_RESPONSE_RESULT_SUCCESS

L2CAP_INFORMATION_RESPONSE_RESULT_

NOT_SUPPORTED

L2CAP_INFORMATION_RESPONSE_RESULT_

PDU_REJECTED

L2CAP_INFORMATION_RESPONSE_RESULT_TIMEOUT

Variable_Data Returned device information.

etData_Indication

Notify the host of incoming L2CAP data.

Return Structure:

typedef struct

{

 Word_t CID;

 Word_t Data_Length;

 Byte_t Variable_Data[1];

} L2CA_Data_Indication_t;

Event Parameters:

Data_Length Number of bytes read in, i.e., in Variable_Data.

CID Channel identifier.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 407 of 737 January 10, 2014

Variable_Data Data read in.

etData_Error_Indication

Notify the host of incoming L2CAP data errors. The Data Error Event is issued when an

inconsistency is detected in the reception of data on a channel that is configured for

reliable operation.

Return Structure:

typedef struct

{

 Word_t Result;

 Word_t Status;

 Word_t CID;

} L2CA_Data_Error_Indication_t;

Event Parameters:

Result Outcome of this operation. Possible values are:

L2CAP_DATA_READ_RESULT_SUCCESS

L2CAP_DATA_READ_RESULT_ERROR

Status If Result was an error, what the cause of the error was. Possible

values are:

L2CAP_DATA_READ_STATUS_MTU_EXCEEDED

L2CAP_DATA_READ_STATUS_RECEIVE_TIMEOUT

L2CAP_DATA_READ_STATUS_SIZE_ERROR

CID Channel identifier.

etGroup_Data_Indication

Notify the host of incoming connectionless data.

Return Structure:

typedef struct

{

 Word_t PSM;

 Word_t Data_Length;

 Byte_t Variable_Data[1];

} L2CA_Group_Data_Indication_t;

Event Parameters:

Data_Length Number of bytes read in, i.e., in Variable_Data.

PSM Protocol/Service Multiplexer value to which this callback is to

be registered.

Variable_Data Data read in.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 408 of 737 January 10, 2014

etGroup_Member_Status

Notify the host that a member has been added to a group and notify the host of the

connection status.

Return Structure:

typedef struct

{

 Word_t PSM;

 Word_t GroupCID;

 BD_ADDR_t BD_ADDR;

 Boolean_t Connected;

} L2CA_Group_Member_Status_t;

Event Parameters:

PSM Registered PSM associated with the group.

GroupCID Channel identifier that uniquely identifies the group.

BD_ADDR Address of the Bluetooth device.

Connected Specifies whether or not the specified device is currently

connected or not.

etChannel_Buffer_Empty_Indication

Notify the host that all buffered data has been sent to a remote device.

Return Structure:

typedef struct

{

 Word_t CID;

} L2CA_Channel_Buffer_Empty_Indication_t;

Event Parameters:

CID Channel identifier which has no longer had any data available

for transmitting.

etConnection_Parameter_Update_Indication

Notify the host that a connection parameter update request indication has been received.

This event is only dispatched to the following fixed channel:

L2CAP_CHANNEL_IDENTIFIER_LE_SIGNALLING_CHANNEL

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 409 of 737 January 10, 2014

Return Structure:

typedef

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

 Word_t IntervalMin;

 Word_t IntervalMax;

 Word_t SlaveLatency;

 Word_t TimeoutMultiplier;

} L2CA_Connection_Parameter_Update_Indication_t;

Event Parameters:

FCID Fixed channel identifier which the connection parameter update

indication request was received.

BD_ADDR Bluetooth device address of the device that has requested the

connection parameter update.

IntervalMin Minimum value for the the connection interval. This should fall

within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

IntervalMax This should be greater than or equal to Conn_Interval_Min and

shall fall within the range:

HCI_LE_CONNECTION_INTERVAL_MINIMUM

HCI_LE_CONNECTION_INTERVAL_MAXIMUM

Both intervals follow the rule:

Time = N * 1.25 msec

SlaveLatency Slave latency for connection. This should be in range:

HCI_LE_CONNECTION_LATENCY_MINIMUM

HCI_LE_CONNECTION_LATENCY_MAXIMUM

TimeoutMultiplier Supervision timeout multiplier for LE link. This should be in

range:

HCI_LE_SUPERVISION_TIMEOUT_MINIMUM

HCI_LE_SUPERVISION_TIMEOUT_MAXIMUM

 The Supervision_Timeout follows the rule:

Time = N * 10 msec

etConnection_Parameter_Update_Confirmation

Notify the host that a connection parameter update response (confirmation) has been

received. This event is only dispatched to the following fixed channel:

L2CAP_CHANNEL_IDENTIFIER_LE_SIGNALLING_CHANNEL

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 410 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

 Word_t Result;

} L2CA_Connection_Parameter_Update_Confirmation_t;

Event Parameters:

FCID Fixed channel identifier which the connection parameter update

indication response (confirmation) was received.

BD_ADDR Bluetooth device address of the device that has responsed to the

connection parameter update request.

Result Result of the connection parameter update request. This will be

one of the following values:

L2CAP_CONNECTION_PARAMETER_UPDATE_

RESPONSE_RESULT_ACCEPTED

L2CAP_CONNECTION_PARAMETER_UPDATE_

RESPONSE_RESULT_REJECTED

etFixed_Channel_Connect_Indication

Notify the host that a fixed channel connection from a remote device has occurred. This

event is only dispatched to the callback that registered for a specific fixed channel.

Return Structure:

typedef

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

 L2CA_Controller_Type_t ControllerType;

} L2CA_Fixed_Channel_Connect_Indication_t;

Event Parameters:

FCID Fixed channel identifier which the connection event was

received.

BD_ADDR Bluetooth device address of the device that has connected to the

local device on the corresponding fixed channel.

ControllerType Value that specifies the controller type of the fixed channel

connection. This will be one of the following:

ctBR_EDR

ctLE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 411 of 737 January 10, 2014

etFixed_Channel_Disconnect_Indication

Notify the host that a fixed channel disconnect from a remote device has occurred. This

event is only dispatched to the callback that registered for a specific fixed channel.

Return Structure:

typedef

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

} L2CA_Fixed_Channel_Disconnect_Indication_t;

Event Parameters:

FCID Fixed channel identifier which the connection event was

received.

BD_ADDR Bluetooth device address of the device that has disconnected

from the local device on the corresponding fixed channel.

etFixed_Channel_Data_Indication

Notify the host of incoming fixed channel L2CAP data. This event is only dispatched to

the callback that registered for a specific fixed channel.

Return Structure:

typedef struct

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

 Word_t Data_Length;

 Byte_t Variable_Data[1];

} L2CA_Fixed_Channel_Data_Indication_t;

Event Parameters:

FCID Fixed channel identifier which the data was received.

BD_ADDR Bluetooth device address of the device that has sent the data to

the local device on the corresponding fixed channel.

Data_Length Number of bytes read in, i.e., in Variable_Data.

Variable_Data Data read in.

etFixed_Channel_Buffer_Empty_Indication

Event that is dispatched to notify the host that all buffered data has been sent to a remote

device for the specified fixed channel connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 412 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t FCID;

 BD_ADDR_t BD_ADDR;

} L2CA_Fixed_Channel_Buffer_Empty_Indication_t;

Event Parameters:

FCID Fixed channel identifier which the data was received.

BD_ADDR Bluetooth device address of the device that has sent the data to

the local device on the corresponding fixed channel.

2.4 SDP API

The Service Discovery Protocol (SDP) provides a means for finding services available from or

through a Bluetooth device. Commonly used data types are listed in section 2.4.1. Section 2.4.2

describes the SDP response callback prototype. Section 2.4.3 lists the SDP function calls. The

actual prototypes and constants outlined in this section can be found in the SDPAPI.H header file

in the Bluetopia distribution.

2.4.1 Commonly Used SDP Data Types

The following data types and structures are commonly used in the SDP functions. The list of data

types covered in this section are listed in the table below.

Data Type Description

SDP_Data_Element_Type_t Enumeration of all data types used with the SDP API.

SDP_UUID_Entry_t Structure to hold a Universally Unique ID information.

SDP_Attribute_ID_List_Entry_t Structure to hold the Attribute ID information.

SDP_Data_Element_t Structure to hold an individual SDP data element (any type).

SDP_Response_Data_Type_t Enumeration of all SDP request response data types.

SDP_Error_Response_Data_t Structure to hold error response information returned from a

remote SDP server when a invalid request occurs.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 413 of 737 January 10, 2014

SDP_Data_Element_Type_t

Enumeration of all data types used with the SDP API.

Enumeration:

typedef enum

{

 deNIL,

 deNULL,

 deUnsignedInteger1Byte,

 deUnsignedInteger2Bytes,

 deUnsignedInteger4Bytes,

 deUnsignedInteger8Bytes,

 deUnsignedInteger16Bytes,

 deSignedInteger1Byte,

 deSignedInteger2Bytes,

 deSignedInteger4Bytes,

 deSignedInteger8Bytes,

 deSignedInteger16Bytes,

 deTextString,

 deBoolean,

 deURL,

 deUUID_16,

 deUUID_32,

 deUUID_128,

 deSequence,

 deAlternative

} SDP_Data_Element_Type_t;

SDP_UUID_Entry_t

Structure to hold a Universally Unique ID information. Since there are three possible

sizes of UUID, the main structure is a union of the three optional size UUID structures

Structures:

typedef struct

{

 Byte_t UUID_Byte0;

 Byte_t UUID_Byte1;

} UUID_16_t;

typedef struct

{

 Byte_t UUID_Byte0;

 Byte_t UUID_Byte1;

 Byte_t UUID_Byte2;

 Byte_t UUID_Byte3;

} UUID_32_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 414 of 737 January 10, 2014

typedef struct

{

 Byte_t UUID_Byte0;

 Byte_t UUID_Byte1;

 Byte_t UUID_Byte2;

 Byte_t UUID_Byte3;

 Byte_t UUID_Byte4;

 Byte_t UUID_Byte5;

 Byte_t UUID_Byte6;

 Byte_t UUID_Byte7;

 Byte_t UUID_Byte8;

 Byte_t UUID_Byte9;

 Byte_t UUID_Byte10;

 Byte_t UUID_Byte11;

 Byte_t UUID_Byte12;

 Byte_t UUID_Byte13;

 Byte_t UUID_Byte14;

 Byte_t UUID_Byte15;

} UUID_128_t;

typedef struct

{

 SDP_Data_Element_Type_t SDP_Data_Element_Type;

 union

 {

 UUID_16_t UUID_16;

 UUID_32_t UUID_32;

 UUID_128_t UUID_128;

 } UUID_Value;

} SDP_UUID_Entry_t;

SDP_Attribute_ID_List_Entry_t

Structure to hold the Attribute ID information.

Structure:

typedef struct

{

 Boolean_t Attribute_Range;

 Word_t Start_Attribute_ID;

 Word_t End_Attribute_ID;

} SDP_Attribute_ID_List_Entry_t;

Fields:

Attribute_Range Whether or not this Attribute is a range of IDs versus a single

ID. If TRUE, than the range is specified by the Start_ and End_

fields. If FALSE, then only the Start_ field is valid and holds

the Attribute ID.

Start_Attribute_ID Either the only Attribute ID or the first Attribute ID, depending

on the setting of the Attribute_Range field.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 415 of 737 January 10, 2014

End_Attribute ID The last Attribute ID, if Attribute_Range field is the FALSE.

SDP_Data_Element_t

Structure to hold an individual SDP data element (any type).

Structure:

typedef struct _tagSDP_Data_Element_t

{

 SDP_Data_Element_Type_t SDP_Data_Element_Type;

 DWord_t SDP_Data_Element_Length;

 union

 {

 Byte_t UnsignedInteger1Byte;

 Word_t UnsignedInteger2Bytes;

 DWord_t UnsignedInteger4Bytes;

 Byte_t UnsignedInteger8Bytes[8];

 Byte_t UnsignedInteger16Bytes[16];

 SByte_t SignedInteger1Byte;

 SWord_t SignedInteger2Bytes;

 SDWord_t SignedInteger4Bytes;

 Byte_t SignedInteger8Bytes[8];

 Byte_t SignedInteger16Bytes[16];

 Byte_t Boolean;

 UUID_16_t UUID_16;

 UUID_32_t UUID_32;

 UUID_128_t UUID_128;

 Byte_t *TextString;

 Byte_t *URL;

 struct _tagSDP_Data_Element_t *SDP_Data_Element_Sequence;

 struct _tagSDP_Data_Element_t *SDP_Data_Element_Alternative;

 } SDP_Data_Element;

} SDP_Data_Element_t;

Fields:

SDP_Data_Element_Type One of the enumerated types of data elements.

SDP_Data_Element_Length Length in bytes of the data element.

SDP_Data_Element The data element itself.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 416 of 737 January 10, 2014

SDP_Response_Data_Type_t

Enumeration of all SDP request response data types.

Enumeration:

typedef enum

{

 rdTimeout,

 rdConnectionError,

 rdErrorResponse,

 rdServiceSearchResponse,

 rdServiceAttributeResponse,

 rdServiceSearchAttributeResponse,

 rdServiceAttributeResponse_Raw,

 rdServiceSearchAttributeResponse_Raw

} SDP_Response_Data_Type_t;

SDP_Error_Response_Data_t

Structure to hold error response information returned from a remote SDP server when a

invalid request occurs.

Structure:

typedef struct

{

 Word_t Error_Code;

 Word_t Error_Info_Length;

 Byte_t *Error_Info;

} SDP_Error_Response_Data_t;

Fields:

Error_Code Type of error that occurred. Possible values are:

SDP_ERROR_CODE_INVALID_UNSUPPORTED_SDP_VERSION

SDP_ERROR_CODE_INVALID_SERVICE_RECORD_HANDLE

SDP_ERROR_CODE_INVALID_REQUEST_SYNTAX

SDP_ERROR_CODE_INVALID_PDU_SIZE

SDP_ERROR_CODE_INVALID_CONTINUATION_STATE

SDP_ERROR_CODE_INSUFFICIENT_RESOURCES

Error_Info_Length Length in bytes of Error_Info.

Error_Info Optional additional error information for some error codes.

2.4.2 SDP Event Callbacks

The SDP event callbacks available in the Bluetooth Protocol Stack API and the functions used to

register and unregister them are listed in the table below and described in the text which follows.

Callback/Function Description/Purpose

SDP_Service_Search_Request Issues a Service Search request to a remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 417 of 737 January 10, 2014

SDP_Service_Attribute_Request Issues a Service Attribute request to a remote

device.

SDP_Service_Search_Attribute_Request Issues a Service Search Attribute request to a

remote device.

SDP_Service_Attribute_Request_Raw Issues a Service Attribute request to a remote

device whose response will not be parsed by the

SDP layer.

SDP_Service_Search_Attribute_Request_

Raw

Issues a Service Search Attribute request to a

remote device whose response will not be parsed

by the SDP layer.

SDP_Set_Server_Connection_Mode Sets the SDP connection mode and allows for a

callback to be registered to watch connection

events.

The SDP Response Callback is not used as a permanent registered callback, but as a dynamic

callback which is passed to the search functions and gets called when search results are available.

The SDP Connection Callback, registered with SDP_Set_Server_Connection_Mode(), is

registered until the same function is called to un-register it.

SDP_Response_Callback_t

This user-supplied function will be called whenever a SDP Request Response returns with

the Bluetooth Protocol Stack that is specified with the specified Bluetooth Stack ID. This

function passes to the caller the Bluetooth Stack ID, the SDP Request ID that was

assigned to the SDP Service Request, the SDP Response Data associated with the SDP

Request Response that occurred, and the SDP Callback Parameter that was specified when

this Callback was installed. The caller is free to use the contents of the SDP Request

Response Data only in the context of this callback. If the caller requires the Data for a

longer period of time, then the callback function must copy the data into another Data

Buffer(s). This function is guaranteed not to be invoked more than once simultaneously

for the specified installed callback (i.e. this function does not have to be reentrant).

Prototype:

void (BTPSAPI *SDP_Response_Callback_t)(unsigned int BluetoothStackID,

unsigned int SDPRequestID, SDP_Response_Data_t *SDP_Response_Data,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

SDPRequestID Unique identifier associated with an outstanding Request.

SDP_Response_Data Pointer to aSDP_Response_Data_t structure that contains the

results from an SDP request. This structure is defined below.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 418 of 737 January 10, 2014

CallbackParameter User defined value received in the DSP request and

dispatched with the SDP response. This can be used to

uniquely identify a response when multiple requests are

outstanding.

SDP Response Data Structures

The following structures define the SDP_Response_Data returned in the callback.

Structures:
typedef struct

{

 SDP_Response_Data_Type_t SDP_Response_Data_Type;

 union

 {

 SDP_Error_Response_Data_t SDP_Error_Response_Data;

 SDP_Service_Search_Response_Data_t SDP_Service_Service_Search_Response_Data;

 SDP_Service_Attribute_Response_Data_t SDP_Service_Attribute_Response_Data;

 SDP_Service_Search_Attribute_Response_Data_t SDP_Service_Search_Attribute_Response_Data;

 SDP_Raw_Attribute_Response_Data_t SDP_Raw_Attribute_Response_Data;

 } SDP_Response_Data;

} SDP_Response_Data_t;

Where the response data types in the union are defined by the following structures:
typedef struct

{

 Word_t Error_Code;

 Word_t Error_Info_Length;

 Byte_t *Error_Info;

} SDP_Error_Response_Data_t;

typedef struct

{

 Word_t Total_Service_Record_Count;

 DWord_t *Service_Record_List;

} SDP_Service_Search_Response_Data_t;

typedef struct

{

 Word_t Attribute_ID;

 SDP_Data_Element_t SDP_Data_Element;

} SDP_Service_Attribute_Value_Data_t;

typedef struct

{

 Word_t Number_Attribute_Values;

 SDP_Service_Attribute_Value_Data_t *SDP_Service_Attribute_Value_Data;

} SDP_Service_Attribute_Response_Data_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 419 of 737 January 10, 2014

typedef struct

{

 Word_t Number_Service_Records;

 SDP_Service_Attribute_Value_Data_t *SDP_Service_Attribute_Value_Data;

} SDP_Service_Search_Attribute_Response_Data_t;

typedef struct

{

 SDP_Response_Data_Type_t SDP_Response_Data_Type;

 DWord_t Raw_Attribute_Data_Length;

 Byte_t *Raw_Attribute_Data;

} SDP_Raw_Attribute_Response_Data_t;

SDP_Connection_Event_Callback_t

The following declared type represents the Prototype Function for the SDP Connection

event callback. This function will be called whenever a callback has been registered for

SDP connection events that is associated with the specified Bluetooth Stack ID. This

function passes to the caller the Bluetooth Stack ID, the SDP Connection event data of the

specified event, and the SDP Connection event callback parameter that was specified

when this callback was installed. The caller is free to use the contents of the SDP

Connection event data ONLY in the context of this callback. If the caller requires the data

for a longer period of time, then the callback function MUST copy the data into another

data buffer. This function is guaranteed NOT to be invoked more than once

simultaneously for the specified installed callback (i.e. this function DOES NOT have be

reentrant). It needs to be noted however, that if the same callback is installed more than

once, then the callbacks will be called serially. Because of this, the processing in this

function should be as efficient as possible. It should also be noted that this function is

called in the thread context of a thread that the user does NOT own. Therefore, processing

in this function should be as efficient as possible (this argument holds anyway because

other SDP Connection events will not be processed while this function call is

outstanding).

Note: This function MUST NOT Block and wait for events that can only be satisfied by

receiving other SDP Connection events. A deadlock WILL occur because NO SDP

Connection event callbacks will be issued while this function is currently outstanding.

Prototype:

void (BTPSAPI *SDP_Connection_Event_Callback_t)(unsigned int BluetoothStackID,

SDP_Connection_Event_Data_t *SDP_Connection_Event_Data, unsigned long

CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

SDP_Connection_Event_Data Pointer to the passed event data. See definitions in the next

section.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 420 of 737 January 10, 2014

CallbackParameter User-defined parameter (e.g., tag value) that was defined in

the callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP Connection Event Structures

The following structures define the SDP_Connection_Event_Data returned in the

callback.

Structures:
typedef struct

{

 SDP_Connection_Event_Type_t Event_Data_Type;

 Word_t Event_Data_Size;

 union

 {

 SDP_Connect_Request_Indication_Data_t *SDP_Connect_Request_Indication_Data;

 SDP_Connect_Indication_Data_t *SDP_Connect_Indication_Data;

 SDP_Disconnect_Indication_Data_t *SDP_Disconnect_Indication_Data;

 } Event_Data;

} SDP_Connection_Event_Data_t;

Where the event data types in the union are defined by the following structures:
typedef struct

{

 BD_ADDR_t BD_ADDR;

} SDP_Connect_Request_Indication_Data_t;

typedef struct

{

 BD_ADDR_t BD_ADDR;

} SDP_Connect_Indication_Data_t;

typedef struct

{

 BD_ADDR_t BD_ADDR;

} SDP_Disconnect_Indication_Data_t;

2.4.3 SDP Functions

The function calls available in the SDP layer API are listed in the table below and are described in

the text that follows.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 421 of 737 January 10, 2014

Function Description

SDP_Create_Service_Record Add an SDP Service Record to the SDP database.

SDP_Update_Service_Record_Service_Cl

ass

Updates the Service Class UUID(s) of a Serivce

Record

SDP_Delete_Service_Record Delete an SDP Service Record from the SDP

database.

SDP_Add_Attribute Adds a Service Attribute to an SDP Service Record

in the SDP database.

SDP_Add_Raw_Attribute Adds a pre-parsed Service Attribute to an SDP

Service Record in the SDP database.

SDP_Delete_Attribute Delete a Service Attribute from an SDP Service

Record in the SDP database.

SDP_Service_Search_Request Make an SDP Service Search request.

SDP_Service_Attribute_Request Make an SDP Service Attribute request.

SDP_Service_Attribute_Request_Raw Makes an SDP Service Attribute request with the

response being dispatched to the caller without

being parsed.

SDP_Service_Search_Attribute_Request Make a combined Service search and Attribute

search request.

SDP_Service_Search_Attribute_Request_

Raw

Make a combined Service search and Attribute

search request with the response being dispatched

to the caller without being parsed.

SDP_Cancel_Service_Request Terminate the currently active search request.

SDP_Parse_Raw_Attribute_Response_Da

ta

Parses the specified raw SDP attribute data into

Bluetopia SDP API format.

SDP_Free_Parsed_Attribute_Response_D

ata

Frees parsed data that was parsed with

SDP_Parse_Raw_Attribute_Response_Data().

SDP_Set_Disconnect_Mode Instruct SDP Module on how to handle Disconnect

requests.

SDP_Disconnect_Server Instruct SDP Module to disconnect from remote

SDP Server.

SDP_Get_Server_Connection_Mode Allows a mechanism of querying the current

connection mode of the SDP layer.

SDP_Set_Server_Connection_Mode Allows a mechanism of setting the current

connection mode of the SDP layer and registering a

callback to watch SDP connection events.

SDP_Connect_Request_Response Allows a mechanism of accepting a SDP

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 422 of 737 January 10, 2014

Function Description

connection request from a remote device.

SDP_Create_Service_Record

This function is responsible for adding an SDP Service Record to the SDP Database. The

first parameter to this function is the Bluetooth Stack ID of the SDP Server to create the

SDP Service Record on. The second parameter is the number of UUID Entries that are

present in the third parameter array. The second parameter CANNOT be zero, and the

third parameter must contain at least as many entries as specified by the second parameter.

If this function is successful, this function will return a positive, non-zero, value which

represents the SDP Server Record Handle of the Service Record that was created on the

specified SDP Server.

Prototype:

long BTPSAPI SDP_Create_Service_Record(unsigned int BluetoothStackID,

unsigned int NumberServiceClassUUID, SDP_UUID_Entry_t SDP_UUID_Entry[]);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

NumberServiceClassUUID Number of UUIDs that are present in the array of UUIDs

SDP_UUID_Entry[] Array of UUIDs that represent the ServiceClassIDList attributes

of the Service Record.

Return:

Positive non-Zero value if successful. This represents the SDP Server Record Handle of

the Service Record that was created on the specified SDP Server.

Negative if an error occurred and the record was not added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INTERNAL_ERROR

BTPS_ERROR_ADDING_SERVICE_ATTRIBUTE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 423 of 737 January 10, 2014

SDP_Update_Service_Record_Service_Class

The following function is responsible for Updating the Service Class Attribute for the

specified SDP Service Record. This function accepts as input the Bluetooth Stack ID of the

Bluetooth Protocol Stack that the SDP Server resides on and the SDP Service Record Handle

whose service class will be updated. The Service_Record_Handle parameter must have been

obtained via a successful call to the SDP_Create_Service_Record() function. The third

parameter specifies the number of UUIDs for the service class and the final parameter lists the

UUIDs to be used. This function returns zero if the Service class was updated successfully, or

a negative value if there was an error.

Prototype:

int BTPSAPI SDP_Update_Service_Record_Service_Class (unsigned int

BluetoothStackID, DWord_t Service_Record_Handle,

unsigned int NumberServiceClassUUID, SDP_UUID_Entry_t SDP_UUID_Entry[]);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Service_Record_Handle Handle to the service record to be deleted. This value is obtained

from a successful call to SDP_Create_Service_Record.

NumberServiceClassUUID Number of UUIDs that are present in the array of UUIDs

SDP_UUID_Entry[] Array of UUIDs that represent the ServiceClassIDList attributes

of the Service Record.

Return:

Zero value if successful.

Negative if an error occurred and the record was not added. Possible values are:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_SERVICE_RECORD

BTPS_ERROR_EXPECTED_UUID_ENTRY

BTPS_ERROR_INTERNAL_ERROR

BTPS_ERROR_INSUFFICIENT_RESOURCES

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 424 of 737 January 10, 2014

SDP_Delete_Service_Record

This function is responsible for deleting a SDP Service Record that was added with the

SDP_Create_Service_Record function. This function accepts as input, the Bluetooth

Stack ID of the Bluetooth Protocol Stack that the SDP Server resides on and the SDP

Service Record Handle to delete from the specified SDP Server. The second parameter to

this function is obtained via a successful call to the SDP_Create_Service_Record function.

This function deletes the specified SDP Service Record and deletes ALL SDP Attributes

that are associated with the specified Service Record.

Prototype:

int BTPSAPI SDP_Delete_Service_Record(unsigned int BluetoothStackID,

DWord_t Service_Record_Handle);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Service_Record_Handle Handle to the service record to be deleted. This value is obtained

from a successful call to SDP_Create_Service_Record.

Return:

Zero (0) if the specified Service Record was deleted successfully

Negative return error code if the Service Record was NOT deleted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_SERVICE_RECORD

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Add_Attribute

This function is responsible for adding an SDP Service Attribute to the specified SDP

Service Record. This function accepts as input the Bluetooth Stack ID of the Bluetooth

Protocol Stack that the SDP Server resides on and the SDP Service Record Handle to Add

the specified Attribute. The third parameter specifies the Attribute Value that is to be

associated with the specified Attribute. This value must contain a valid entry.

Prototype:

int BTPSAPI SDP_Add_Attribute(unsigned int BluetoothStackID,

DWord_t Service_Record_Handle, Word_t Attribute_ID,

SDP_Data_Element_t *SDP_Data_Element);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 425 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Service_Record_Handle Handle to the service record of the service to add the attribute

to. This value is obtained from a successful call to

SDP_Create_Service_Record.

Attribute_ID Unique identifier that distinguishes this attribute from other

service attributes.

SDP_Data_Element Pointer to an SDP_Data_Element_t structure. This structure

contains the Attribute information to be associated with the

Attribute_ID.

Return:

Zero (0) if the specified Attribute was added successfully.

Negative return error code if the Attribute was NOT added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Add_Raw_Attribute

This function is responsible for adding an SDP Service Attribute to the specified SDP

Service Record. This function is identical to the SDP_Add_Attribute() with the

exception that this function takes the Attribute Data for the attribute in pre-parsed format

(that can be sent directly out over the air with no conversion).

Prototype:

int BTPSAPI SDP_Add_Raw_Attribute(unsigned int BluetoothStackID,

DWord_t Service_Record_Handle,

SDP_ConstantServiceAttributeEntry_t *AttributeEntry);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Service_Record_Handle Handle to the service record of the service to add the attribute

to. This value is obtained from a successful call to

SDP_Create_Service_Record.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 426 of 737 January 10, 2014

AttributeEntry Pointer to a structure containing information on the attribute that

is to be added to the specified service. This structure is defined

as follows:
typedef struct

{

 Byte_t Flags;

 Word_t AttributeID;

 DWord_t AttributeLength;

 DWord_t NumberOfUUIDOffsets;

 Word_t *UUIDOffsets;

 Byte_t *AttributeData;

} SDP_ConstantServiceAttributeEntry_t;

Return:

Zero (0) if the specified Attribute was added successfully.

Negative return error code if the Attribute was NOT added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Delete_Attribute

This function is responsible for deleting an SDP Service Attribute from the specified SDP

Service Record. This function accepts as input the Bluetooth Stack ID of the Bluetooth

Protocol Stack that the SDP Server resides on and the SDP Service Record Handle in

which the specified Attribute exists. The third parameter specifies the Attribute ID to be

removed.

Prototype:

int BTPSAPI SDP_Delete_Attribute(unsigned int BluetoothStackID,

DWord_t Service_Record_Handle, Word_t Attribute_ID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Service_Record_Handle Handle to the service record to be deleted. This value is

obtained from a successful call to SDP_Create_Service_Record.

Attribute_ID Unique identifier that distinguishes this attribute to be removed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 427 of 737 January 10, 2014

Return:

Zero (0) if the specified Attribute was deleted successfully.

Negative return error code if the Attribute was NOT deleted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_SERVICE_RECORD

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Service_Search_Request

This function is responsible for issuing an SDP Service Search Request to the specified

BD_ADDR. This function will return the result of the Search Request in the SDP

Response Callback that is specified in the calling of this function. This function accepts

as input, the Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP Client

resides on, the Bluetooth device address to remotely connect to (the Remote SDP Server

will reside on this BD_ADDR), the Maximum Number of Service Records, the Number of

Service UUID's that are to be searched for, the Service UUID's to actually search for, the

SDP Response Callback Function, and the SDP Response Callback Function Callback

Parameter.

Prototype:

int BTPSAPI SDP_Service_Search_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t MaximumServiceRecordCount,

unsigned int NumberServiceUUID, SDP_UUID_Entry_t SDP_UUID_Entry[],

SDP_Response_Callback_t SDP_Response_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device where the SDP Server

resides.

MaximumServiceRecordCount Specifies the Maximum number of service records to be

returned for this request.

NumberServiceUUID Number of Service UUIDs that are contained in the array of

Service UUIDs.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 428 of 737 January 10, 2014

SDP_UUID_Entry Pointer to an array of Service UUIDs that will serve as the

Service Search Pattern. This parameter must point to an

array that contains the number of entries specified by the

NumberServiceUUID parameter.

SDP_Response_Callback Callback function pointer of type SDP_Response_Callback_t

to be used to dispatch the result of the Service Search.

CallbackParameter User-defined value to be dispatched with the result of the

request. This can be used to uniquely identify a response

when multiple requests are outstanding.

Return:

Positive, non-Zero value if the specified Request was successfully submitted. This value

is a Reference ID to the request. This value is specified in the

SDP_Cancel_Service_Request function when the request is to be canceled.

Negative return error code if the Request was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_EXPECTED_UUID_ENTRY

Possible Events:

rdTimeout

rdConnectionError

rdErrorResponse

rdServiceSearchResponse

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Service_Attribute_Request

This function is responsible for issuing an SDP Service Attribute Request to the specified

BD_ADDR. This function will return the result of the Attribute Request in the SDP

Response Callback that is specified in the calling of this function. This function accepts

as input, the Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP Client

resides on, the Bluetooth device address to remotely connect to (the Remote SDP Server

will reside on this BD_ADDR), the Service Record Handle of the SDP Service Record to

query, the Number of Entries in the Attribute List that are to be queried, the Attribute List

to actually use in the Query, the SDP Response Callback Function, and the SDP Response

Callback Function Callback Parameter.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 429 of 737 January 10, 2014

Prototype:

int BTPSAPI SDP_Service_Attribute_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, DWord_t ServiceRecordHandle,

unsigned int NumberAttributeListElements,

SDP_Attribute_ID_List_Entry_t AttributeIDList[],

SDP_Response_Callback_t SDP_Response_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device where the SDP Server

resides.

Service_Record_Handle Handle of the remote service record to be searched. This

value is either known in advance or is determined by looking

at the SDP_Service_Search_Response data.

NumberAttributeListElements Number of Attribute Elements that are contained in the array

of Attribute Elements.

AttributeIDList Array of Attribute Elements on which to search.

SDP_Response_Callback Callback function pointer of type SDP_Response_Callback_t

to be used to dispatch the result of the Service Search.

CallbackParameter User-defined value to be dispatched with the result of the

request. This can be used to uniquely identify a response

when multiple requests are outstanding.

Return:

Positive, non-Zero value if the specified Request was successfully submitted. This value

is a Reference ID to the request. This value is specified in the

SDP_Cancel_Service_Request function when the request is to be canceled.

Negative return error code if the Request was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_EXPECTED_UUID_ENTRY

Possible Events:

rdTimeout

rdConnectionError

rdErrorResponse

rdServiceAttributeResponse

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 430 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Service_Attribute_Request_Raw

This function is responsible for issuing an SDP Service Attribute Request to the specified

BD_ADDR. This function will return the result of the Attribute Request in the SDP

Response Callback that is specified in the calling of this function. This function accepts

as input, the Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP Client

resides on, the Bluetooth device address to remotely connect to (the Remote SDP Server

will reside on this BD_ADDR), the Service Record Handle of the SDP Service Record to

query, the Number of Entries in the Attribute List that are to be queried, the Attribute List

to actually use in the Query, the SDP Response Callback Function, and the SDP Response

Callback Function Callback Parameter.

Note:

This function is identical to the SDP_Service_Attribute_Request_API() function with the

exception that a successful response will be dispatched in the

rdServiceAttributeResponse_Raw event and the SDP response data will be un-parsed.

Prototype:

int BTPSAPI SDP_Service_Attribute_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, DWord_t ServiceRecordHandle,

unsigned int NumberAttributeListElements,

SDP_Attribute_ID_List_Entry_t AttributeIDList[],

SDP_Response_Callback_t SDP_Response_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device where the SDP Server

resides.

Service_Record_Handle Handle of the remote service record to be searched. This

value is either known in advance or is determined by looking

at the SDP_Service_Search_Response data.

NumberAttributeListElements Number of Attribute Elements that are contained in the array

of Attribute Elements.

AttributeIDList Array of Attribute Elements on which to search.

SDP_Response_Callback Callback function pointer of type SDP_Response_Callback_t

to be used to dispatch the result of the Service Search.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 431 of 737 January 10, 2014

CallbackParameter User-defined value to be dispatched with the result of the

request. This can be used to uniquely identify a response

when multiple requests are outstanding.

Return:

Positive, non-Zero value if the specified Request was successfully submitted. This value

is a Reference ID to the request. This value is specified in the

SDP_Cancel_Service_Request function when the request is to be canceled.

Negative return error code if the Request was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_EXPECTED_UUID_ENTRY

Possible Events:

rdTimeout

rdConnectionError

rdErrorResponse

rdServiceAttributeResponse_Raw

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Service_Search_Attribute_Request

This function is responsible for issuing an SDP Service Search Attribute Request to the

specified BD_ADDR, i.e., a combined Service and Attribute search. This function will

return the result of the Service Search Attribute Request in the SDP Response Callback

that is specified in the calling of this function. This function accepts as input, the

Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP Client resides on, the

Bluetooth device address to remotely connect to (the Remote SDP Server will reside on

this BD_ADDR), the Number of Service UUID's that are to be searched for, the Service

UUID's to actually search for, the Number of Entries in the Attribute List that are to be

queried, the Attribute List to actually use in the Query, the SDP Response Callback

Function, and the SDP Response Callback Function Callback Parameter.

Prototype:

int BTPSAPI SDP_Service_Search_Attribute_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, unsigned int NumberServiceUUID,

SDP_UUID_Entry_t SDP_UUID_Entry[], unsigned int NumberAttributeListElements,

SDP_Attribute_ID_List_Entry AttributeIDList[],

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 432 of 737 January 10, 2014

SDP_Response_Callback_t SDP_Response_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device where the SDP Server

resides.

NumberServiceUUID Number of Service UUIDs that area contained in an array of

Service UUIDs.

SDP_UUID_Entry Pointer to an array of Service UUIDs that will serve as the

Service Search Pattern. This parameter must point to an array

that contains the number of entries specified by the

NumberServiceUUID parameter.

NumberAttributeListElements Number of Attribute Elements that are contained in the array

of Attribute Elements.

AttributeIDList Array of Attribute Elements on which to search.

SDP_Response_Callback Callback function pointer of type SDP_Response_Callback_t

to be used to dispatch the result of the Service Search.

CallbackParameter User-defined value to be dispatched with the result of the

request. This can be used to uniquely identify a response

when multiple requests are outstanding.

Return:

Positive, non-Zero value if the specified Request was successfully submitted. This value

is a Reference ID to the request. This value is specified in the

SDP_Cancel_Service_Request function when the request is to be canceled.

Negative return error code if the Request was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_EXPECTED_UUID_ENTRY

Possible Events:

rdTimeout

rdConnectionError

rdErrorResponse

rdServiceSearchAttributeResponse

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 433 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Service_Search_Attribute_Request_Raw

This function is responsible for issuing an SDP Service Search Attribute Request to the

specified BD_ADDR, i.e., a combined Service and Attribute search. This function will

return the result of the Service Search Attribute Request in the SDP Response Callback

that is specified in the calling of this function. This function accepts as input, the

Bluetooth Stack ID of the Bluetooth Protocol Stack that the SDP Client resides on, the

Bluetooth device address to remotely connect to (the Remote SDP Server will reside on

this BD_ADDR), the Number of Service UUID's that are to be searched for, the Service

UUID's to actually search for, the Number of Entries in the Attribute List that are to be

queried, the Attribute List to actually use in the Query, the SDP Response Callback

Function, and the SDP Response Callback Function Callback Parameter.

Note:

This function is identical to the SDP_Service_Search_Attribute_Request() function with

the exception that a successful response will be dispatched in the

rdServiceSearchAttributeResponse_Raw event and the SDP response data will be un-

parsed.

Prototype:

int BTPSAPI SDP_Service_Search_Attribute_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, unsigned int NumberServiceUUID,

SDP_UUID_Entry_t SDP_UUID_Entry[], unsigned int NumberAttributeListElements,

SDP_Attribute_ID_List_Entry AttributeIDList[],

SDP_Response_Callback_t SDP_Response_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device where the SDP Server

resides.

NumberServiceUUID Number of Service UUIDs that area contained in an array of

Service UUIDs.

SDP_UUID_Entry Pointer to an array of Service UUIDs that will serve as the

Service Search Pattern. This parameter must point to an array

that contains the number of entries specified by the

NumberServiceUUID parameter.

NumberAttributeListElements Number of Attribute Elements that are contained in the array

of Attribute Elements.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 434 of 737 January 10, 2014

AttributeIDList Array of Attribute Elements on which to search.

SDP_Response_Callback Callback function pointer of type SDP_Response_Callback_t

to be used to dispatch the result of the Service Search.

CallbackParameter User-defined value to be dispatched with the result of the

request. This can be used to uniquely identify a response

when multiple requests are outstanding.

Return:

Positive, non-Zero value if the specified Request was successfully submitted. This value

is a Reference ID to the request. This value is specified in the

SDP_Cancel_Service_Request function when the request is to be canceled.

Negative return error code if the Request was not submitted. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CONNECTION_INFORMATION

BTPS_ERROR_ATTEMPTING_CONNECTION_TO_DEVICE

BTPS_ERROR_EXPECTED_UUID_ENTRY

Possible Events:

rdTimeout

rdConnectionError

rdErrorResponse

rdServiceSearchAttributeResponse_Raw

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Cancel_Service_Request

This function is responsible for terminating a currently executing SDP Service Request.

This function accepts as input the Bluetooth Protocol Stack ID of the Bluetooth Protocol

Stack the SDP Service Request was issued on, and the SDP Service Request ID of the

SDP Service Request that was issued. The SDP Service Request ID is obtained via a

successful call to one of the following functions:

SDP_Service_Search_Request

SDP_Service_Attribute_Request

SDP_Service_Search_Attribute_Request

After this function is called, the callback that was installed for the specified SDP Service

Request will not be called and the caller will not have access to the SDP Service

Response Information for the SDP Service Request.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 435 of 737 January 10, 2014

Prototype:

void BTPSAPI SDP_Cancel_Service_Request(unsigned int BluetoothStackID,

unsigned int ServiceRequestID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

ServiceRequestID Unique identifier associated with an outstanding Request.

Return:

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Parse_Raw_Attribute_Response_Data

This function is utility function that exists to parse the specified Raw SDP Attribute

Response Data into the Bluetopia SDP API (Parsed) format.

Prototype:

int BTPSAPI SDP_Parse_Raw_Attribute_Response_Data(

unsigned int BluetoothStackID,

SDP_Raw_Attribute_Response_Data_t *RawAttributeResponseData,

SDP_Parsed_Attribute_Response_Data_t *ParsedAttributeResponseData);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

RawAttributeResponseData The raw SDP Attribute Response data to parse. This

structure is defined as follows:
typedef

{

 SDP_Response_Data_Type_t SDP_Response_Data_Type;

 DWord_t Raw_Attribute_Data_Length;

 Byte_t *Raw_Attribute_Data;

} SDP_Raw_Attribute_Response_Data_t;

Note that SDP_Response_Data_Type must be either of the

following types:

rdServiceAttributeResponse_Raw

rdServiceSearchAttributeResponse_Raw

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 436 of 737 January 10, 2014

ParsedAttributeResponseData Must contain a pointer to a structure that is to receive the

parsed SDP Attribute Response information upon a

successful return. This structure is defined as follows:
typedef struct

{

 SDP_Response_Data_t SDP_Response_Data;

 void *RESERVED;

} SDP_Parsed_Attribute_Response_Data_t;

Note, this MUST be freed using the

SDP_Free_Parsed_Attribute_Response_Data() API if this

function returns success to prevent a memory leak.

Return:

Zero (0) if the specified Attribute was added successfully.

Negative return error code if the Attribute was NOT added. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Free_Parsed_Attribute_Response_Data

The following function is provided to allow a mechanism to free all resources that were

allocated to parse Raw SDP Response Data into Bluetopia Parsed SDP Data.

Prototype:

void BTPSAPI SDP_Free_Parsed_Attribute_Response_Data(

SDP_Parsed_Attribute_Response_Data_t *ParsedAttributeResponseData);

Parameters:

ParsedAttributeResponseData Must contain a pointer to a structure that was passed to the

successful call to

SDP_Parse_Raw_Attribute_Response_Data(). This

structure is defined as follows:
typedef struct

{

 SDP_Response_Data_t SDP_Response_Data;

 void *RESERVED;

} SDP_Parsed_Attribute_Response_Data_t;

Return:

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 437 of 737 January 10, 2014

Notes:

SDP_Set_Disconnect_Mode

This function is responsible for informing the SDP Module how it is to execute SDP

Service Requests regarding the Connection Disconnection. This function accepts as input

the Bluetooth Protocol Stack ID of the Bluetooth Protocol Stack for which the SDP Server

resides and the SDP Connection Mode that is to be set. This function will return zero if

the Connection Mode was successfully set, or a negative return error code if there was an

error. Note, if the caller specifies SDP Disconnect Mode dmManual then the caller is

responsible for disconnecting the the SDP Connection (to the remote server) by calling the

SDP_Disconnect_Server() function. If the SDP Disconnect Mode dmAutomatic is chosen

(default) then the Connection to the server is automatically terminated when the SDP

Transaction completes. The SDP Connection Mode can only be changed when there are

no Client SDP Transactions outstanding.

Prototype:

int BTPSAPI SDP_Set_Disconnect_Mode(unsigned int BluetoothStackID,

SDP_Disconnect_Mode_t SDPDisconnectMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SDPDisconnectMode What type of mode should be set. The possible values are:

dmAutomatic {default mode}

dmManual

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 438 of 737 January 10, 2014

SDP_Disconnect_Server

This function is responsible for disconnecting a Remote SDP Server connection that is still

currently open. This function is used when the SDP Disconnect Mode is set to dmManual

and an SDP Client Request has been issued. This function has no effect when used when

the SDP Disconnect Mode is set to dmAutomatic. This function simply accepts the

Bluetooth device address that has had an SDP Service Request issued. Upon completion

of this function, there is no longer an L2CAP SDP Channel connection present between

the local device and the Remote SDP Server.

Prototype:

int BTPSAPI SDP_Disconnect_Server(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of the Remote SDP Server for which

the local device is currently connected

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Get_Server_Connection_Mode

This function provides a mechanism of querying the current server connection mode of the

SDP layer.

Note:

The default server connection mode is sdAutomaticAccept.

Prototype:

int BTPSAPI SDP_Get_Server_Connection_Mode(unsigned int BluetoothStackID,

 SDP_Server_Connection_Mode_t *SDPServerConnectionMode)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 439 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize

SDPServerConnectionMode Pointer to return the current SDP server connection mode into.

If this function returns success this will point to one of the

following values:

sdAutomaticAccept

sdManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Set_Server_Connection_Mode

This function provides a mechanism of setting the current server connection mode of the

SDP layer.

Note:

The default server connection mode is sdAutomaticAccept.

If this function is called with the SDPServerConnectionMode set to sdManualAccept then

the SDPConnectionEventCallback MUST be specified (i.e. cannot be NULL). Otherwise

the SDPConnectionEventCallback is optional and may be NULL.

If this function is called with the SDPServerConnectionMode set to sdAutomaticAccept

and the SDPConnectionEventCallback is specified (i.e. not NULL) then the caller can

watch SDP connection events.

Prototype:

int BTPSAPI SDP_Set_Server_Connection_Mode(unsigned int BluetoothStackID,

SDP_Server_Connection_Mode_t SDPServerConnectionMode,

SDP_Connection_Event_Callback_t SDPConnectionEventCallback,

unsigned long CallbackParameter)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 440 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

SDPServerConnectionMode The server connection mode to set. This may be one of the

following values:

sdAutomaticAccept

sdManualAccept

SDPConnectionEventCallback A connection event callback function that can be specified

to watch SDP connection events.

CallbackParameter Callback parameter that will be passed to the connection

event callback specified in the

SDPConnectionEventCallback parameter whenever a SDP

connection event occurs.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SDP_Connect_Request_Response

This function provides a mechanism of accepting an SDP connection request from a

remote device. This function an only be used if the SDP server connection mode, set with

the SDP_Set_Server_Connection_Mode(), is set to sdManualAccept.

Prototype:

int BTPSAPI SDP_Connect_Request_Response(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR The BD_ADDR of the remote device whose SDP connection

request is being accepted.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 441 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SDP_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.5 RFCOMM API

RFCOMM provides serial port emulation over top of the L2CAP protocol, which supports up to

60 simultaneous connections between two Bluetooth devices (or device-specific limits).

RFCOMM emulates the nine circuits used in RS-232 serial communications utilizing a subset of

the ETSI TS 07.10 standard (see applicable documents). The SPP (Serial Port Profile) is built on

top of RFCOMM and for many users provides an easier to use interface. The RFCOMM

commands are listed in section 2.5.1, the event callback prototype is described in section 2.5.2,

and the RFCOMM events are itemized in section 2.5.3. The actual prototypes and constants

outlined in this section can be found in the RFCOMAPI.H header file in the Bluetopia

distribution.

2.5.1 RFCOMM Commands

The available RFCOMM command functions are listed in the table below and are described in the

text which follows.

Function Description

RFCOMM_Set_System_Parameters Set up system-wide RFCOMM parameters.

RFCOMM_Get_System_Parameters Retrieve system-wide RFCOMM parameters.

RFCOMM_Set_Data_Queuing_Parameters Set system-wide RFCOMM data packet

queuing parameters.

RFCOMM_Get_Data_Queuing_Parameters Retrieve system-wide RFCOMM data packet

queuing parameters.

RFCOMM_Register_Server_Channel Register a server channel with RFCOMM.

RFCOMM_Un_Register_Server_Channel Unregister an RFCOMM server channel.

RFCOMM_Open_Request Instantiate an RFCOMM service channel

with a remote RFCOMM server.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 442 of 737 January 10, 2014

RFCOMM_Open_Response Accept or reject an Open Request.

RFCOMM_Release_Request Disconnect an RFCOMM channel.

RFCOMM_Send_Credits Send flow control credits to an open

RFCOMM channel.

RFCOMM_Send_Data Send data on an open RFCOMM channel.

RFCOMM_Send_Data_With_Credits Send flow control credits to an open

RFCOMM channel in addition to the

specified data (same RFCOMM packet).

RFCOMM_Parameter_Negotiation_Response Send a response to a parameter negotiation

response request.

RFCOMM_Test_Request Send test data on an open RFCOMM channel

RFCOMM_Flow_Request Control incoming data flow (i.e., turn on/off).

RFCOMM_Modem_Status Send modem status information to remote

RFCOMM entity.

RFCOMM_Line_Status_Change Convey line status change information to the

remote RFCOMM entity.

RFCOMM_Remote_Port_Negotiation_Request Initiate a Remote Port Negotiation command.

RFCOMM_Remote_Port_Negotiation_Response Respond to a Remote Port Negotiation

request.

RFCOMM_Query_Remote_Port_Negotiation Retrieve Remote RFCOMM entity’s current

Port Negotiation Parameters

RFCOMM_Get_Channel_Status Retrieve current status of a specific Channel

RFCOMM_Query_Server_Channel_Present Determine if there is a currently registered

RFCOMM Server Channel for a specific

Server Channel.

RFCOMM_Set_System_Parameters

This function is responsible for setting system-wide parameters. These parameters are

used to control aspects of each Data Link Connection Identifier channel that is opened by

the local or remote side. When a Server is registered, the current SystemParams are used

as the parameters that are to be negotiated for that server connection.

Prototype:

int BTPSAPI RFCOMM_Set_System_Parameters(unsigned int BluetoothStackID,

RFCOMM_System_Parameters_t *SystemParams)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 443 of 737 January 10, 2014

SystemParams The parameters to set. This is a structure defined as:

typedef struct

{

 Boolean_t NegotiateParams;

 Word_t MaximumFrameSize;

 RFCOMM_Flow_Type_t FlowType;

 Byte_t InitialCredits;

 Byte_t AcknowledgementTimer;

 Byte_t ResponseTimerForMultiplexer;

} RFCOMM_System_Parameters_t;

Where the MaximumFrameSize is expressed in bytes. Three

defined constants which relate to frame size are:

RFCOMM_FRAME_SIZE_MINIMUM_VALUE

RFCOMM_FRAME_SIZE_MAXIMUM_VALUE

RFCOMM_FRAME_SIZE_DEFAULT_VALUE

AcknowledgementTimer is in seconds. Three defined constants

which relate to it are:

RFCOMM_ACKNOWLEDGEMENT_TIMER_MINIMUM_VALUE

RFCOMM_ACKNOWLEDGEMENT_TIMER_MAXIMUM_VALUE

RFCOMM_ACKNOWLEDGEMENT_TIMER_DEFAULT_VALUE

ResponseTimerForMultiplexer also is in seconds. Three

defined constants which relate to it are:

RFCOMM_RESPONSE_TIMER_MINIMUM_VALUE

RFCOMM_RESPONSE_TIMER_MAXIMUM_VALUE

RFCOMM_RESPONSE_TIMER_DEFAULT_VALUE

RFCOMM_Flow_Type_t is an enumeration with the following

possible values:

ftCreditFlowNotAllowed,

ftCreditFlowPreferred,

ftCreditFlowMandatory,

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 444 of 737 January 10, 2014

RFCOMM_Get_System_Parameters

This function is used to retrieve system-wide parameters from a Bluetooth device. These

parameters are used to control aspects of each Data Link Connection Identifier that are

opened by the local or remote side.

Prototype:

int BTPSAPI RFCOMM_Get_System_Parameters(unsigned int BluetoothStackID,

RFCOMM_System_Parameters_t *SystemParams)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SystemParams The structure to return the parameters in. See the function

RFCOMM_Set_System_Parameters for explanation of this

structure.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Set_Data_Queuing_Parameters

This function is responsible for setting system-wide data queing parameters. These

parameters are used to control the lower level data packet queing thresholds (to improve

RAM usage). Specifically, these parameters are used to control aspects of the number of

data packets (and only data packets) that can be queued into the lower level (per individual

DLCI). This mechanism allows for the flexibility to limit the amount of RAM that is used

for streaming type applications (where the remote side has a large number of credits that

were granted).

Notes:

This function can only be called when there are NO active connections.

Setting both parameters to zero will disable the queuing mechanism. This means that the

number of queued packets will only be limited via the amount of available RAM.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 445 of 737 January 10, 2014

RFCOMM_Send_Credits() is not considered a data packet in terms of queuing. The only

functions that count towards these values are:

 - RFCOMM_Send_Data()

 - RFCOMM_Send_Data_With_Credits()

Prototype:

int BTPSAPI RFCOMM_Set_Data_Queuing_Parameters(unsigned int BluetoothStackID,

unsigned int MaximumNumberDataPackets, unsigned int QueuedDataPacketsThreshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

MaximumNumberDataPackets The maximum number of data packets that can be queued

into the lower layer simultaneously.

QueuedDataPacketsThreshold The lower threshold limit that the lower layer should call

back to inform RFCOMM that it can queue more data

packets for transmission.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Get_Data_Queuing_Parameters

This function is responsible for querying the system-wide data queing parameters. These

parameters are used to control the lower level data packet queing thresholds (to improve

RAM usage). Specifically, these parameters are used to control aspects of the number of

data packets (and only data packets) that can be queued into the lower level (per individual

DLCI). This mechanism allows for the flexibility to limit the amount of RAM that is used

for streaming type applications (where the remote side has a large number of credits that

were granted).

Notes:

If both parameters are zero the the queuing mechanism is disabled. This means that the

number of queued packets will only be limited via the amount of available RAM.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 446 of 737 January 10, 2014

RFCOMM_Send_Credits() is not considered a data packet in terms of queuing. The only

functions that count towards these values are:

 - RFCOMM_Send_Data()

 - RFCOMM_Send_Data_With_Credits()

Prototype:

int BTPSAPI RFCOMM_Get_Data_Queuing_Parameters(unsigned int BluetoothStackID,

unsigned int *MaximumNumberDataPackets,

unsigned int *QueuedDataPacketsThreshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

MaximumNumberDataPackets Buffer that will contain the maximum number of data

packets that can be queued into the lower layer

simultaneously (if successful).

QueuedDataPacketsThreshold Buffer that will contain the lower threshold limit that the

lower layer should call back to inform RFCOMM that it can

queue more data packets for transmission (if successful).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Register_Server_Channel

This function is used to register a server channel that the RFCOMM Layer is to providing

services for. The channel is associated with the Bluetooth Protocol Stack, specified by the

Bluetooth Stack ID, and a server program the run above the RFCOMM layer (e.g., the

Serial Port Profile, SPP). After the channel is registered, all events that occur on the

specified channel will be dispatched to the upper layer via the callback function provided.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 447 of 737 January 10, 2014

Prototype:

int BTPSAPI RFCOMM_Register_Server_Channel(unsigned int BluetoothStackID,

Byte_t ServerChannel, RFCOMM_Event_Callback_t RFCOMM_Event_Callback,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerChannel The channel number that this server supports. This must be in

the range of the following two constants:

RFCOMM_MINIMUM_SERVER_CHANNEL_ID

RFCOMM_MAXIMUM_SERVER_CHANNEL_ID

RFCOMM_Event_Callback Function to call when events occur on this channel.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each event.

Return:

Positive, non-zero if successful. The return value will be the Server ID that can be passed

to RFCOMM_Un_Register_Server_Channel to un-register the server.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_ADDING_SERVER_INFORMATION

Possible Events:

etOpen_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Un_Register_Server_Channel

This function is used to unregister a server channel that the RFCOMM Layer is providing

services for. Upon completion of this function, all access to this RFCOMM channel will

fail.

Prototype:

int BTPSAPI RFCOMM_Un_Register_Server_Channel(unsigned int BluetoothStackID,

unsigned int ServerID)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 448 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerID Server ID of the server that is to be un-registered.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Open_Request

This function is used to instantiate an RFCOMM service channel between the client

application residing above this RFCOMM layer and a destination endpoint (server) that

resides on the device associated with the Bluetooth BD_ADDR supplied. Only One

L2CAP/ACL connection can exist between two RFCOMM entities, so this function will

first check to see if an RFCOMM connection already exists between the two devices. If a

connection already exists, then a new channel will be negotiated between the two devices

over an existing L2CAP connection. If a connection does not exist, this function will

initiate a L2CAP connection between the two devices on which the RFCOMM channel

will be created in the future. If a connection was successfully initiated, the TEI (Terminal

Endpoint Identifier) and DLCI (Data Link Connection Identifier) values are returned and

must be supplied in future call to functions that are to operate on the connection.

Prototype:

int BTPSAPI RFCOMM_Open_Request(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Channel, Word_t *TEI, Byte_t *DLCI,

RFCOMM_Open_Parameters_t *OpenParams,

RFCOMM_Event_Callback_t RFCOMM_Event_Callback,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device to establish the connection to.

Channel Server channel to open on the remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 449 of 737 January 10, 2014

TEI Returned Terminal Endpoint Identifier. Must be supplied on

future calls for this channel.

DLCI Returned Data Link Connection Identifier. This must be

supplied on future calls for this channel.

OpenParams Parameters to use in establishing the channel. These are passed

in the following structure:

typedef struct

{

 Byte_t OptionFlags;

 Word_t MaximumFrameSize;

 Byte_t InitialCredits;

} RFCOMM_Open_Parameters_t;

Where OptionFlags indicate whether either or both of the other

two fields are defined for this channel. This is a bitmask which

may have the follow bits:

RFCOMM_OPEN_PARAMS_OPTION_TYPE_MAX_FRAME_SIZE

RFCOMM_OPEN_PARAMS_OPTION_TYPE_INITIAL_CREDITS

InitialCredits is used for connections to channels with credit-

based flow control capabilities.

RFCOMM_Event_Callback Function to call when events occur on this channel.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each event.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_ADD_CONNECTION_I

NFORMATION

BTPS_ERROR_RFCOMM_UNABLE_TO_ADD_CHANNEL_

INFORMATION

BTPS_ERROR_RFCOMM_UNABLE_TO_CONNECT_TO_

REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_MAX_FRAME_SIZE

Possible Events:

etOpen_Confirmation

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 450 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Open_Response

The following function is provided to allow a method for a server to accept or reject a

connection request. When a connection is being established to a server, an

etOpen_Indication is dispatched to the upper layer. The upper layer should examine the

parameters that are being requested and supply an Accept or Reject for the connection via

this function.

Prototype:

int BTPSAPI RFCOMM_Open_Response(unsigned int BluetoothStackID, Word_t TEI,

Byte_t DLCI, Byte_t Accept)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier from etOpen_Indication event.

DLCI Data Link Connection Identifier from etOpen_Indication event

Accept Return TRUE or FALSE to indicate acceptance or rejection.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_CONNECT_TO_

REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

Possible Events:
etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 451 of 737 January 10, 2014

RFCOMM_Release_Request

This function is used to disconnect an RFCOMM channel that is currently open or in the

process of being opened. This function takes as it parameters a Bluetooth Stack ID to

identify the Bluetooth device that this command is associated with. The parameters TEI

and Data Link Connection Identifier identify the channel that is to be disconnected.

Prototype:

int BTPSAPI RFCOMM_Release_Request(unsigned int BluetoothStackID, Word_t TEI,

Byte_t DLCI)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel to release.

DLCI Data Link Connection Identifier of channel to release.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Send_Credits

This function is used to send Credits to an RFCOMM channel that is currently open. This

function takes as it parameters a Bluetooth Stack ID to identify the Bluetooth device that

this command is associated with. The TEI and DLCI identify the channel to which the

Credits are to be sent. The number of credits that are sent to the receiver will be added to

the number of credits that are already available to the receiver. Note, this function is only

available for those channels that have been configured to use credit-based flow control.

Prototype:

int BTPSAPI RFCOMM_Send_Credits(unsigned int BluetoothStackID, Word_t TEI, Byte_t

DLCI, Byte_t Credits)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 452 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Credits Number of credits to issue to the receiver (cannot be zero).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

etCredit_Indication

etRelease_Indication

etTransport_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Send_Data

This function is used to send data to an RFCOMM channel that is currently open. The

channel must be in a connected state and have the proper flow control requirements met

before a successful data transfer can be expected.

Prototype:

int BTPSAPI RFCOMM_Send_Data(unsigned int BluetoothStackID, Word_t TEI,

Byte_t DLCI, Word_t Length, Byte_t *Data)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 453 of 737 January 10, 2014

Length Length of the data (cannot be zero).

Data Data to send.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

BTPS_ERROR_RFCOMM_CONTROL_MESSAGE_

CURRENTLY_PENDING

BTPS_ERROR_RFCOMM_FLOW_IS_DISABLED

BTPS_ERROR_RFCOMM_MAX_FRAME_SIZE_EXCEEDED

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

etDLCI_Data_Indication

etFlow_Indication

etFlow_Confirmation

etRelease_Indication

etTransport_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Send_Data_With_Credits

This function is used to send data to an RFCOMM channel that is currently open. The

channel must be in a connected state and have the proper flow control requirements met

before a successful data transfer can be expected. This function is also used to send

Credits to the same RFCOMM channel. This function takes as it parameters a Bluetooth

Stack ID to identify the Bluetooth device that this command is associated with. The TEI

and DLCI identify the channel to which the Credits and data are to be sent. The number

of credits that are sent to the receiver will be added to the number of credits that are

already available to the receiver. This function also accepts data that will be sent on the

channel (in the same RFCOMM packet). Note, this function is only available for those

channels that have been configured to use credit-based flow control, and the credit

parameter must be non-zero and this function must specify at least one byte of data to

send.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 454 of 737 January 10, 2014

Prototype:

int BTPSAPI RFCOMM_Send_Data_With_Credits(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI, Byte_t Credits, Word_t Length, Byte_t *Data)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Credits Number of credits to issue to the receiver (cannot be zero).

Length Length of the data (cannot be zero).

Data Data to send.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

BTPS_ERROR_RFCOMM_CONTROL_MESSAGE_

CURRENTLY_PENDING

BTPS_ERROR_RFCOMM_FLOW_IS_DISABLED

BTPS_ERROR_RFCOMM_MAX_FRAME_SIZE_EXCEEDED

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

etDLCI_Data_Indication

etFlow_Indication

etFlow_Confirmation

etRelease_Indication

etTransport_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 455 of 737 January 10, 2014

RFCOMM_Parameter_Negotiation_Response

The following function is used to send a response to a DLCI parameter negotiation request

(etDLCI_Param_Negotiation_Indication event). A parameter negotiation request as stated in

the Bluetooth specification, can be received at any time. However, if a request is received

after a channel is open, then the re-negotiation of the parameters that were accepted at the

time the channel was opened, is optional.

Prototype:

int BTPSAPI RFCOMM_Parameter_Negotiation_Response(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI, RFCOMM_PN_Data_t *ParamNegotiationData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

ParamNegotiationData A set of parameters that is being negotiated. The values

received in the etDLCI_Param_Negotiation_Indication event

should be examined and if they are acceptable, the response

should return these values to the caller. If any parameter is not

acceptable, the parameter should be changed to a value that is

acceptable and returned to the caller. The parameters are passed

in the following structure:

typedef struct

{

 Word_t MaximumFrameSize;

 RFCOMM_Flow_Type_t FlowType;

 Byte_t Credits;

} RFCOMM_PN_Data_t;

where FlowType is one of the following values:

ftCreditFlowNotAllowed,

ftCreditFlowPreferred,

ftCreditFlowMandatory,

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 456 of 737 January 10, 2014

Possible Events:

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Test_Request

This function is used to send test data to RFCOMM multiplexer channel. This function

has no purpose but to test to see if a remote end is responsive. The remote RFCOMM

multiplexer will echo all data contained if the request back to the caller. The initiator will

receive the data back via future etTest_Confirmation event

Prototype:

int BTPSAPI RFCOMM_Test_Request(unsigned int BluetoothStackID, Word_t TEI,

Word_t Length, Byte_t *Data, RFCOMM_Event_Callback_t RFCOMM_Event_Callback,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Length Length of the data.

Data Data to send.

RFCOMM_Event_Callback Function to call when etTest_Confirmation event occurs.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each event.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

 BTPS_ERROR_RFCOMM_FLOW_IS_DISABLED

BTPS_ERROR_RFCOMM_INVALID_MAX_FRAME_SIZE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 457 of 737 January 10, 2014

Possible Events:

etTest_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Flow_Request

This function is used to control the flow of incoming data on an aggregate basis. The

function requires a callback in order to receive confirmation that the state has changed. In

this implementation, no data buffers reside in RFCOMM, so a request to halt the flow of

data is sent to the remote entity. A confirmation must be received before the new state

will become in effect. The TEI identifies the RFCOMM multiplexer that is being

requested to halt flow. It should be noted that since the multiplexer is being halted, all

DLCI (Data Link Connection Identifier) channels associated with that multiplexer will be

halted with the exception of the multiplexer control channel (DLCI 0) on which the

RFCOMM entities communicate.

Prototype:

int BTPSAPI RFCOMM_Flow_Request(unsigned int BluetoothStackID, Word_t TEI,

Boolean_t ReceiverReady, RFCOMM_Event_Callback_t RFCOMM_Event_Callback,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

ReceiverReady Set to TRUE to allow flow between the RFCOMM entities.

RFCOMM_Event_Callback Function to call with confirmation events.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each event.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 458 of 737 January 10, 2014

etFlow_Confirmation

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Modem_Status

This function is used to convey modem status information between the RFCOMM entities.

RFCOMM transparently passes the status information to the other entity and supplies the

response for the command. RFCOMM will inspect the FC (Flow Control) bit of the

Modem Status Byte and set the Flow State of the DLCI receiving the status information to

the state reflected in the FC bit. This function operates on user DLCI and cannot be

directed to the multiplexer control channel (DLCI 0). Confirmation of the delivery of the

modem status information will be provided via the callback function that is assigned to the

DLCI for which the status applies.

Prototype:

int BTPSAPI RFCOMM_Modem_Status(unsigned int BluetoothStackID, Word_t TEI,

Byte_t DLCI, RFCOMM_Modem_Status_t *ModemStatus)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

ModemStatus Status values to pass to the other RFCOMM entity. This is

defined by the structure:

typedef struct

{

 Byte_t ModemStatus;

 Boolean_t BreakSignal;

 Byte_t BreakLength;

} RFCOMM_Modem_Status_t;

where ModemStatus is defined by the ORing of the following

bit masks values:

MODEM_STATUS_FC_BIT_MASK

MODEM_STATUS_RTC_BIT_MASK

MODEM_STATUS_RTR_BIT_MASK

MODEM_STATUS_IC_BIT_MASK

MODEM_STATUS_DV_BIT_MASK

MODEM_STATUS_BIT_MASK

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 459 of 737 January 10, 2014

BreakLength is in units of 200 milliseconds (as defined by the

constant: RFCOMM_BREAK_TIMEOUT_INTERVAL, which is

in milliseconds). BreakLength only applies when BreakSignal

is set to TRUE. This is used to send a break to the other

RFCOMM entity. Constants defined that related to

BreakLength are as follows:

RFCOMM_BREAK_SIGNAL_DETECTED

RFCOMM_BREAK_SIGNAL_MINIMUM

RFCOMM_BREAK_SIGNAL_MAXIMUM

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:
etModem_Status_Confirmation

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Line_Status_Change

This function is used to convey line status change information between the RFCOMM

entities. RFCOMM transparently passes the status information to the other entity and

supplies a response for the message. RFCOMM does not inspect any bits of the

LineStatus information, but rather passes the information to the upper layer for processing.

This function operates on user DLCI and cannot be directed to the control channel (DLCI

0). Confirmation of the delivery of the line status information will be provided via the

callback function that is assigned to the DLCI for which the status applies.

Prototype:

int BTPSAPI RFCOMM_Line_Status_Change(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI, Byte_t LineStatus)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 460 of 737 January 10, 2014

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

LineStatus One or more conditions indicated by the following bit mask

values:

RFCOMM_LINE_STATUS_NO_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_OVERRUN_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_PARITY_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_FRAMING_ERROR_BIT_MASK

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:
etRemote_Line_Status_Confirmation

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Remote_Port_Negotiation_Request

This function is used to perform a Remote Port Negotiation. The Remote Port Negotiation

command is used to exchange/retrieve port configuration usage information that may be

useful to the upper layers. The command specifies the Baud Rate, software Flow Control

information, etc. The usage of this command is optional.

Prototype:

int BTPSAPI RFCOMM_Remote_Port_Negotiation_Request(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI, RFCOMM_RPN_Port_Data_t *PortData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 461 of 737 January 10, 2014

PortData Parameters to re-negotiate, defined by the following structure:

typedef struct

{

 Byte_t BaudRate;

 Byte_t DataFormat;

 Byte_t FlowControl;

 Byte_t XOnCharacter;

 Byte_t XOffCharacter;

 Word_t ParameterMask;

} RFCOMM_RPN_Port_Data_t;

where BaudRate may be one of the following values:

RFCOMM_RPN_PARAMETER_BAUD_2400

RFCOMM_RPN_PARAMETER_BAUD_4800

RFCOMM_RPN_PARAMETER_BAUD_7200

RFCOMM_RPN_PARAMETER_BAUD_9600

RFCOMM_RPN_PARAMETER_BAUD_19200

RFCOMM_RPN_PARAMETER_BAUD_38400

RFCOMM_RPN_PARAMETER_BAUD_57600

RFCOMM_RPN_PARAMETER_BAUD_115200

RFCOMM_RPN_PARAMETER_BAUD_230400

DataFormat is built up from the following bit mask values, one

from each section:

RFCOMM_RPN_PARAMETER_DATA_BITS_5

RFCOMM_RPN_PARAMETER_DATA_BITS_6

RFCOMM_RPN_PARAMETER_DATA_BITS_7

RFCOMM_RPN_PARAMETER_DATA_BITS_8

RFCOMM_RPN_PARAMETER_STOP_BITS_1

RFCOMM_RPN_PARAMETER_STOP_BITS_1_5 (1.5)

RFCOMM_RPN_PARAMETER_PARITY_DISABLED

RFCOMM_RPN_PARAMETER_PARITY_ODD

RFCOMM_RPN_PARAMETER_PARITY_EVEN

RFCOMM_RPN_PARAMETER_PARITY_MARK

RFCOMM_RPN_PARAMETER_PARITY_SPACE

The above bit mask values are already shifted to the proper bit

position in the word. To access the sections of DataFormat, one

may use the following masks:

RFCOMM_RPN_PARAMETER_DATA_FORMAT_DATA_

BITS_MASK

RFCOMM_RPN_PARAMETER_DATA_FORMAT_STOP_

BITS_MASK

RFCOMM_RPN_PARAMETER_DATA_FORMAT_PARITY_

MASK

FlowControl is built up from the following bit mask values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 462 of 737 January 10, 2014

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_XON_

XOFF_ON_INPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_XON_

XOFF_ON_OUTPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTR_

ON_INPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTR_

ON_OUTPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTC_

ON_INPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTC_

ON_OUTPUT

or may be set to the following value:

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_DISABLED

XOnCharacter and XoffCharacter may be any character.

However, the following constants are defined for these:

RFCOMM_RPN_PARAMETER_DEFAULT_XON_CHARACTER

RFCOMM_RPN_PARAMETER_DEFAULT_XOFF_CHARACTER

ParameterMask indicates which portion(s) of the RFCOMM

interface is being negotiated with this request; defined by the

following bit mask values:

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_BIT_RATE

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_DATA_BITS

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_STOP_BITS

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_PARITY

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_PARITY_TYPE

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_CHARACTER

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XOFF_CHARACTER

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_XOFF_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_XOFF_ON_OUTPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTR_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTR_ON_OUTPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTC_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTC_ON_OUTPUT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 463 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:
etRemote_Port_Negotiation_Confirmation

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Remote_Port_Negotiation_Response

The following function is used to respond to a Remote Port Negotiation Request. The

Remote Port Negotiation command is used to exchange/retrieve port configuration usage

information that may be useful to the upper layers. The command specifies the Baud

Rate, software Flow Control information, etc. The usage of this command is mandatory if

an etRemote_Port_Negotiation_Indication event is received.

Prototype:

int BTPSAPI RFCOMM_Remote_Port_Negotiation_Response(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI, RFCOMM_RPN_Port_Data_t *PortData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

PortData Parameters to negotiate. The values received in the

etRemote_Port_Negotiation_Indication event should be examined

and if they are acceptable, the response should return these

values to the caller. If any parameter is not acceptable, the

parameter should be changed to a value that is acceptable and

returned to the caller. See negotiation request command above

for description of this data.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 464 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Query_Remote_Port_Negotiation

This function is used to Query the Remote Side's Remote Port Negotiation Parameters.

Prototype:

int BTPSAPI RFCOMM_Query_Remote_Port_Negotiation(unsigned int BluetoothStackID,

Word_t TEI, Byte_t DLCI)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_INVALID_TEI

BTPS_ERROR_RFCOMM_INVALID_DLCI

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 465 of 737 January 10, 2014

etRelease_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

RFCOMM_Get_Channel_Status

This function is used to determine the current status of a specific RFCOMM Channel

(even the Control Channel) for a specific Bluetooth device connection. This function is

useful to determine when a RFCOMM Channel has been completely disconnected, as well

as to determine when there is an outstanding message on a specific Channel (to aid with

new connections).

Prototype:

int BTPSAPI RFCOMM_Get_Channel_Status(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Channel, Boolean_t ServerChannel,

RFCOMM_Channel_Status_t *RFCOMM_Channel_Status)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of the remote Bluetooth device

connection that the specified Server Channel is to be queried.

Channel The RFCOMM Server Channel of the channel to query the

status of. This value must be either:

0 (to query the control channel for the connection)

or be a value between the following constants:

RFCOMM_MINIMUM_SERVER_CHANNEL_ID

RFCOMM_MAXIMUM_SERVER_CHANNEL_ID

Note that this value is NOT a DLCI value but rather the Server

Channel Number.

ServerChannel Flag which specifies whether or not the RFCOMM Channel in

question is a local RFCOMM Server (TRUE) or a remote

RFCOMM connection (FALSE). Note that in either case, the

Bluetooth address MUST specify the remotely connected

Bluetooth device.

RFCOMM_Channel_Status Pointer to a variable that is to receive the current status for the

specified Channel. This value returned will be of the following

values:

rsTEIReady

rsTEIDoesNotExist

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 466 of 737 January 10, 2014

rsTEIControlMessageOutstanding

rsTEIDisconnecting

rsDLCIDoesNotExist

rsDLCIReady

rsDLCIControlMessageOutstanding

rsDLCIDisconnecting

Return:

Zero if successful. Note that the RFCOMM_Channel_Status variable will only contain a

valid value if this function returns success, otherwise the variable will contain an unknown

value.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

RFCOMM_Query_Server_Channel_Present

This function is used to determine if there is an RFCOMM Server registered for the

specified Server Channel.

Prototype:

int BTPSAPI RFCOMM_Query_Server_Channel_Present(unsigned int BluetoothStackID,

Byte_t Channel, Boolean_t ServerChannelPresent)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Channel The RFCOMM Server Channel of the server port to determine

the existence of. This value must be between the following

values:

RFCOMM_MINIMUM_SERVER_CHANNEL_ID

RFCOMM_MAXIMUM_SERVER_CHANNEL_ID

Note that this value is NOT a DLCI value but rather the Server

Channel Number.

ServerChannelPresent Buffer which will hold the Boolean return value which specifies

whether a server is present (TRUE) or is not present (FALSE)

for the specified Server Channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 467 of 737 January 10, 2014

Return:

Zero if successful. Note that the ServerChannelPresent variable will only contain a valid

value if this function returns success, otherwise the variable will contain an unknown

value.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.5.2 RFCOMM Event Callback

The RFCOMM event callback is used in several of the RFCOMM commands for capturing

RFCOMM events. This callback function is defined as follows:

RFCOMM_Event_Callback_t

Callback function for all RFCOMM events.

Prototype:

void (BTPSAPI *RFCOMM_Event_Callback_t)(unsigned int BluetoothStackID,

RFCOMM_Event_Data_t *RFCOMM_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

RFCOMM_Event_Data The event that occurred. This is defined by the structure:

typedef struct

{

 RFCOMM_Event_Data_Type_t RFCOMM_Event_Data_Type;

 DWord_t Event_Data_Length;

 union

 {

 RFCOMM_Open_Indication_Data_t *RFCOMM_Open_Indication_Event_Data;

 RFCOMM_Open_Confirmation_Data_t *RFCOMM_Open_Confirmation_Event_Data;

 RFCOMM_Release_Indication_Data_t *RFCOMM_Release_Indication_Event_Data;

 RFCOMM_Data_Data_t *RFCOMM_Data_Indication_Event_Data;

 RFCOMM_Param_Negotiation_Data_t *RFCOMM_Param_Negotiation_Indication_Event_Data;

 RFCOMM_Remote_Port_Negotiation_Data_t

*RFCOMM_Remote_Port_Negotiation_Indication_Event_Data;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 468 of 737 January 10, 2014

 RFCOMM_Remote_Port_Negotiation_Data_t

*RFCOMM_Remote_Port_Negotiation_Confirmation_Event_Data;

 RFCOMM_Remote_Line_Status_Data_t *RFCOMM_Remote_Line_Status_Indication_Event_Data;

 RFCOMM_Remote_Line_Status_Confirmation_Data_t

*RFCOMM_Remote_Line_Status_Confirmation_Event_Data;

 RFCOMM_Modem_Status_Data_t *RFCOMM_Modem_Status_Indication_Event_Data;

 RFCOMM_Modem_Status_Confirmation_Data_t

*RFCOMM_Modem_Status_Confirmation_Event_Data;

 RFCOMM_Test_Data_t *RFCOMM_Test_Confirmation_Event_Data;

 RFCOMM_Flow_Data_t *RFCOMM_Flow_Indication_Event_Data;

 RFCOMM_Flow_Confirmation_Data_t *RFCOMM_Flow_Confirmation_Event_Data;

 RFCOMM_Credit_Indication_Data_t *RFCOMM_Credit_Indication_Event_Data;

 RFCOMM_Non_Supported_Command_Data_t *RFCOMM_Non_Supported_Command_Data;

 RFCOMM_Transport_Buffer_Empty_Data_t *RFCOMM_Transport_Buffer_Empty_Data;

 } RFCOMM_Event_Data;

} RFCOMM_Event_Data_t;

Where RFCOMM_Event_Data_Type one of the enumerations of

the event types listed in the table in section 2.5.3, and each data

structure in the union is described with its event in that section

as well.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.5.3 RFCOMM Events

The events that can be generated by the RFCOMM portion of the Bluetooth Stack are listed in the

table below and are described in the text that follows.

Event Description

etOpen_Indication Channel is being requested to the RFCOMM server.

etOpen_Confirmation Channel has been opened with the remote RFCOMM server.

etRelease_Indication Channel has been disconnected.

etDLCI_Data_Indication Data has been received on the indicated channel.

etDLCI_Param_Negotiation_

Indication

A request has been made to negotiate DLCI parameters for the

channel.

etRemote_Port_Negotiation_

Indication

A request has been made to query or re-negotiate the port

parameters.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 469 of 737 January 10, 2014

etRemote_Port_Negotiation_

Confirmation

Port negotiation response has been received.

etRemote_Line_Status_

Indication

Line status change request has been received.

etRemote_Line_Status_

Confirmation

Line status change has notification has been completed.

etModem_Status_Indication Modem status change request has been received.

etModem_Status_

Confirmation

Modem status change notification has been completed.

etTest_Confirmation Test data has been received.

etFlow_Indication Flow control change request has been received.

etFlow_Confirmation Flow control change has been completed.

etCredit_Indication New flow control credits have received.

etNon_Supported_Command

_Indication

A non-supported command has been received.

etTransport_Buffer_Empty_I

ndication

Used to notify that RFCOMM has buffer space available for

transmit data functions.

etOpen_Indication

Channel open request has been received by the RFCOMM server.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 BD_ADDR_t BD_ADDR;

 RFCOMM_PN_Data_t DLCI_Parameters;

} RFCOMM_Open_Indication_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

BD_ADDR Address of the requesting Bluetooth device.

DLCI_Parameters Parameters for this link, defined in the following structure:

typedef struct

{

 Word_t MaximumFrameSize;

 RFCOMM_Flow_Type_t FlowType;

 Byte_t Credits;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 470 of 737 January 10, 2014

} RFCOMM_PN_Data_t;

where FlowType is one of the following values:

ftCreditFlowNotAllowed,

ftCreditFlowPreferred,

ftCreditFlowMandatory,

etOpen_Confirmation

Confirm that channel has been opened (or failed to open).

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Byte_t Result;

 RFCOMM_PN_Data_t DLCI_Parameters;

} RFCOMM_Open_Confirmation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Result Status of the open request. May be one of the following values:

RFCOMM_CONNECT_RESULT_CONNECTION_SUCCESSFUL

RFCOMM_CONNECT_RESULT_CONNECTION_TIMEOUT

RFCOMM_CONNECT_RESULT_CONNECTION_REFUSED

DLCI_Parameters Parameters for this link, defined in the following structure:

typedef struct

{

 Word_t MaximumFrameSize;

 RFCOMM_Flow_Type_t FlowType;

 Byte_t Credits;

} RFCOMM_PN_Data_t;

where FlowType is one of the following values:

ftCreditFlowNotAllowed,

ftCreditFlowPreferred,

ftCreditFlowMandatory,

etRelease_Indication

A channel has been disconnected.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 471 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

} RFCOMM_Release_Indication_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

etDLCI_Data_Indication

RFCOMM channel data has been received.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Word_t DataLength;

 Byte_t *Data;

} RFCOMM_Data_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

DataLength Length of the data.

Data Received data.

 etDLCI_Param_Negotiation_Indication

Request to negotiate DLCI parameters for the channel has been received.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 RFCOMM_PN_Data_t Params;

} RFCOMM_Param_Negotiation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 472 of 737 January 10, 2014

Params A set of parameters that is being negotiated. The values

received in the etDLCI_Param_Negotiation_Indication event

should be examined and if they are acceptable, the response

should return these values to the caller. If any parameter is not

acceptable, the parameter should be changed to a value that is

acceptable and returned to the caller. The parameters are passed

in the following structure:

typedef struct

{

 Word_t MaximumFrameSize;

 RFCOMM_Flow_Type_t FlowType;

 Byte_t Credits;

} RFCOMM_PN_Data_t;

where FlowType is one of the following values:

ftCreditFlowNotAllowed,

ftCreditFlowPreferred,

ftCreditFlowMandatory,

etRemote_Port_Negotiation_Indication
etRemote_Port_Negotiation_Confirmation

Request has been received to return the Port Negotiation parameters, either from a query

or a (re-)negotiation request (indication), or a response has been received (confirmation).

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Boolean_t ParameterRequest;

 RFCOMM_RPN_Port_Data_t PortData;

} RFCOMM_Remote_Port_Negotiation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

ParameterRequest TRUE if this is a request (indication event) and FALSE if this is

a confirmation.

PortData Parameters to re-negotiate, defined by the following structure:

typedef struct

{

 Byte_t BaudRate;

 Byte_t DataFormat;

 Byte_t FlowControl;

 Byte_t XOnCharacter;

 Byte_t XOffCharacter;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 473 of 737 January 10, 2014

 Word_t ParameterMask;

} RFCOMM_RPN_Port_Data_t;

where BaudRate may be one of the following values:

RFCOMM_RPN_PARAMETER_BAUD_2400

RFCOMM_RPN_PARAMETER_BAUD_4800

RFCOMM_RPN_PARAMETER_BAUD_7200

RFCOMM_RPN_PARAMETER_BAUD_9600

RFCOMM_RPN_PARAMETER_BAUD_19200

RFCOMM_RPN_PARAMETER_BAUD_38400

RFCOMM_RPN_PARAMETER_BAUD_57600

RFCOMM_RPN_PARAMETER_BAUD_115200

RFCOMM_RPN_PARAMETER_BAUD_230400

DataFormat is built up from the following bit mask values, one

from each section:

RFCOMM_RPN_PARAMETER_DATA_BITS_5

RFCOMM_RPN_PARAMETER_DATA_BITS_6

RFCOMM_RPN_PARAMETER_DATA_BITS_7

RFCOMM_RPN_PARAMETER_DATA_BITS_8

RFCOMM_RPN_PARAMETER_STOP_BITS_1

RFCOMM_RPN_PARAMETER_STOP_BITS_1_5 (1.5)

RFCOMM_RPN_PARAMETER_PARITY_DISABLED

RFCOMM_RPN_PARAMETER_PARITY_ODD

RFCOMM_RPN_PARAMETER_PARITY_EVEN

RFCOMM_RPN_PARAMETER_PARITY_MARK

RFCOMM_RPN_PARAMETER_PARITY_SPACE

The above bit mask values are already shifted to the proper bit

position in the word. To access the sections of DataFormat, one

may use the following masks:

RFCOMM_RPN_PARAMETER_DATA_FORMAT_DATA_

BITS_MASK

RFCOMM_RPN_PARAMETER_DATA_FORMAT_STOP_

BITS_MASK

RFCOMM_RPN_PARAMETER_DATA_FORMAT_PARITY_

MASK

FlowControl is built up from the following bit mask values:

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_XON_

XOFF_ON_INPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_XON_

XOFF_ON_OUTPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTR_

ON_INPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTR_

ON_OUTPUT

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTC_

ON_INPUT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 474 of 737 January 10, 2014

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_RTC_

ON_OUTPUT

or may be set to the following value:

RFCOMM_RPN_PARAMETER_FLOW_CONTROL_DISABLED

XOnCharacter and XoffCharacter may be any character.

However, the following constants are defined for these:

RFCOMM_RPN_PARAMETER_DEFAULT_XON_CHARACTER

RFCOMM_RPN_PARAMETER_DEFAULT_XOFF_CHARACTER

ParameterMask indicates which portion(s) of the RFCOMM

interface is being negotiated with this request; defined by the

following bit mask values:

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_BIT_RATE

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_DATA_BITS

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_STOP_BITS

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_PARITY

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_PARITY_TYPE

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_CHARACTER

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XOFF_CHARACTER

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_XOFF_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_XON_XOFF_ON_OUTPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTR_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTR_ON_OUTPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTC_ON_INPUT

RFCOMM_RPN_PARAMETER_PARAMETER_MASK_

NEGOTIATE_RTC_ON_OUTPUT

etRemote_Line_Status_Indication
etRemote_Line_Status_Confirmation

The line status change has been received or confirm the response to receipt.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 475 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Byte_t LineStatus;

} RFCOMM_Remote_Line_Status_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

LineStatus One or more conditions indicated by the following bit mask

values:

RFCOMM_LINE_STATUS_NO_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_OVERRUN_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_PARITY_ERROR_BIT_MASK

RFCOMM_LINE_STATUS_FRAMING_ERROR_BIT_MASK

etRemote_Line_Status_Confirmation

The line status change has been received or confirm the response to receipt.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

} RFCOMM_Remote_Line_Status_Confirmation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

etModem_Status_Indication

A modem status change has been received.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 RFCOMM_Modem_Status_t ModemStatus;

} RFCOMM_Modem_Status_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 476 of 737 January 10, 2014

ModemStatus Status values received from the other RFCOMM entity. This is

defined by the structure:

typedef struct

{

 Byte_t ModemStatus;

 Boolean_t BreakSignal;

 Byte_t BreakLength;

} RFCOMM_Modem_Status_t;

where ModemStatus is defined by the ORing of the following

bit masks values:

RFCOMM_MODEM_STATUS_FC_BIT_MASK

RFCOMM_MODEM_STATUS_RTC_BIT_MASK

RFCOMM_MODEM_STATUS_RTR_BIT_MASK

RFCOMM_MODEM_STATUS_IC_BIT_MASK

RFCOMM_MODEM_STATUS_DV_BIT_MASK

RFCOMM_MODEM_STATUS_BIT_MASK

Note: BreakLength (in Break Signal Intervals of 200ms) only

applies when BreakSignal is set to TRUE. This is used to send

a break to the other RFCOMM entity. The following constants

are defined when using the BreakLength member:

RFCOMM_BREAK_TIMEOUT_INTERVAL

RFCOMM_BREAK_SIGNAL_DETECTED

RFCOMM_BREAK_SIGNAL_MINIMUM

RFCOMM_BREAK_SIGNAL_MAXIMUM

etModem_Status_Confirmation

Confirm that the modem status change has been processed.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

} RFCOMM_Modem_Status_Confirmation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

etTest_Confirmation

Confirm that the test data has been sent and responded to (or caused an error).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 477 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t TEI;

 Word_t SequenceLength;

 Byte_t *Sequence;

} RFCOMM_Test_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

SequenceLength Length of the Sequence data.

Data Actually data returned (echoed).

etFlow_Indication

Flow control change request has been received.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Boolean_t ReceiverReady;

} RFCOMM_Flow_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

ReceiverReady TRUE will resume flow between RFCOMM entities, FALSE

will pause it.

etFlow_Confirmation

Flow control change request has been processed.

Return Structure:

typedef struct

{

 Word_t TEI;

} RFCOMM_Flow_Confirmation_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

etCredit_Indication

Indicate that additional flow control credit has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 478 of 737 January 10, 2014

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Byte_t NewCredits;

 DWord_t TotalCredits;

} RFCOMM_Credit_Indication_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

NewCredits Additional credits received.

TotalCredits Current total of credits (new added to existing)

etNon_Supported_Command_Indication

A command was received which is not supported by this implementation of RFCOMM.

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

 Byte_t UnsupportedCommand;

} RFCOMM_Non_Supported_Command_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

DLCI Data Link Connection Identifier of channel.

UnsupportedCommand Command received.

etTransport_Buffer_Empty_Indication

Used to notify that all data which has been buffered has been transmitted and that

additional data write functions can resume if they had been disabled due to an channel

buffer full condition..

Return Structure:

typedef struct

{

 Word_t TEI;

 Byte_t DLCI;

} RFCOMM_Transport_Buffer_Empty_Data_t;

Event Parameters:

TEI Terminal Endpoint Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 479 of 737 January 10, 2014

DLCI Data Link Connection Identifier of channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 480 of 737 January 10, 2014

2.6 SCO API

The Synchronous Connection-Oriented link API provides capabilities for managing SCO

Connections. This API layer consists of callbacks, described in section 2.6.1 and commands,

described in section 2.6.2. The actual prototypes and constants outlined in this section can be

found in the SCOAPI.H header file in the Bluetopia distribution.

2.6.1 SCO Event/Data Callbacks and Registration

The SCO callbacks available in the Bluetooth Protocol Stack API and the functions used to

register and unregister them are listed in the table below and described in the text which follows.

Callback/Function Description/Purpose

SCO_Connect_Request_Callback_t Handle SCO Connection Requests.

SCO_Connection_Callback_t Handle SCO Connection Actions.

SCO_Register_Synchronous_Connect_Req

uest_Callback

Registers a eSCO and SCO Connection Request

callback.

SCO_Register_Connect_Request_Callback Register a connection request callback function

with the SCO layer.

SCO_Un_Register_Callback Undo a callback registration

The callback function is free to use the contents of the SCO Action Data only in the context of the

callback. If the function requires the data for a longer period of time, then the callback function

must copy them into another data buffer(s).

These callback functions is guaranteed not to be invoked more than once simultaneously for the

specified installed callback (i.e. this function does not have be reentrant). It Needs to be noted

however, that if the same Callback is installed more than once, then the callbacks will be called

serially. Because of this, the processing in this functionshould be as efficient as possible. It

should also be noted that these functions are called in the Thread Context of a Thread that the user

does not own. Therefore, processing in this function should be as efficient as possible (this

argument holds anyway because another SCO Action will not be processed while one of these

function calls is outstanding).

NOTE: These functions MUST NOT Block and wait for events that can only be satisfied by

receiving other Bluetooth Stack Events. A Deadlock WILL occur because other Callbacks might

not be issued while one of these functions is currently outstanding.

SCO_Connect_Request_Callback_t

This is the prototype function for an SCO Connection Request Callback. This function

will be called whenever an SCO Connection Request occurs within the Bluetooth Protocol

Stack that is specified with the specified Bluetooth Stack ID. This function passes to the

caller the Bluetooth Stack ID, the SCO Connection Request Data associated with the SCO

Connection Request that occurred, and the SCO Callback Parameter that was specified

when this Callback was installed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 481 of 737 January 10, 2014

Note: A Connection can only be accepted/rejected in the context of this callback function.

If the SCO_Accept_Connection function is not called during this callback (to accept or

reject the connection) then there is no way to Accept/Reject the SCO Connection Request,

and the SCO Connection Request will timeout on the originator’s end and fail.

Prototype:

void (BTPSAPI *SCO_Connect_Request_Callback_t)(unsigned int BluetoothStackID,

SCO_Connect_Request_Data_t *SCO_Connect_Request_Data,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Connect_Request_Data Data associated with this connection request. This data

structure is defined as follows:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Class_of_Device_t Class_of_Device;

 unsigned int SCO_Connection_ID;

 SCO_Link_Type_t LinkType;

} SCO_Connect_Request_Data_t;

Where,

BD_ADDR The address of the requesting device.

Class_of_Device Class of the requesting device.

SCO_Connection_ID Identifier for this connection which is

passed to the SCO_Accept_Connection function.

LinkType The link type of the connection request.

Possible values are:

 ltSCO

 ltESCO

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

SCO_Connection_Callback_t

This is a dynamic callback function which is associated with an SCO Connection and

receives notification when actions are taken on the connection, namely a successful

connection or a disconnect. Callbacks of this type are passed to the following two

functions:

SCO_Add_Connection Initiate a connection to a remote device

SCO_Accept_Connection Respond to request for a connection from a remote device.

This function passes to the caller the Bluetooth Stack ID, the SCO Action Data associated

with the SCO Action that occurred, and the SCO Callback Parameter that was specified

when this Callback was installed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 482 of 737 January 10, 2014

Prototype:

void (BTPSAPI *SCO_Connection_Callback_t)(unsigned int BluetoothStackID,

SCO_Event_Data_t *SCO_Event_Data, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Event_Data Event associated with this SCO Connection. This structure is

defined as follows:

typedef struct {

 SCO_Event_Type_t SCO_Event_Type;

 Word_t SCO_Event_Data_Size;

 union

 {

SCO_Connect_Result_Event_t *SCO_Connect_Result_Event;

SCO_Disconnect_Event_t *SCO_Disconnect_Event;

SCO_Data_Indication_Event_t *SCO_Data_Indication_Event;

SCO_Transmit_Buffer_Empty_Event_t *

SCO_Transmit_Buffer_Empty_Event;

SCO_Synchronous_Connection_Changed_Event_t

*SCO_Synchronous_Connection_Changed_Event;

 } SCO_Event_Data;

} SCO_Event_Data_t;

Where, the SCO_Event_Type is one of the following possible

values are:

etSCO_Connect_Result

etSCO_Disconnect

etSCO_Data_Indication

etSCO_Transmit_Buffer_Empty_Indication

etSCO_Synchronous_Connection_Changed

And, the Event Data structures are defined below. These are

associated, respectively, with the Event Types defined above.

typedef struct

{

 unsigned int SCO_Connection_ID;

 BD_ADDR_t BD_ADDR;

 unsigned int Connection_Status;

 SCO_Link_Type_t LinkType;

 Byte_t Transmission_Interval;

 Byte_t Retransmission_Window;

 Word_t Rx_Packet_Length;

 Word_t Tx_Packet_Length;

 Byte_t Air_Mode;

} SCO_Connect_Result_Event_t;

typedef struct

{

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 483 of 737 January 10, 2014

 unsigned int SCO_Connection_ID;

 BD_ADDR_t BD_ADDR;

 unsigned int Disconnection_Status;

} SCO_Disconnect_Event_t;

typedef struct

{

 unsigned int SCO_Connection_ID;

 BD_ADDR_t BD_ADDR;

 Byte_t DataLength;

 Byte_t *DataBuffer;

 Word_t PacketStatus;

} SCO_Data_Indication_Event_t;

typedef struct

{

 unsigned int SCO_Connection_ID;

 BD_ADDR_t BD_ADDR;

} SCO_Transmit_Buffer_Empty_Event_t;

typedef struct

{

 unsigned int SCO_Connection_ID;

 Byte_t Status;

 Byte_t Transmission_Interval;

 Byte_t Retransmission_Window;

 Word_t Rx_Packet_Length;

 Word_t Tx_Packet_Length;

} SCO_Synchronous_Connection_Changed_Event_t;

Where the Connection_Status and Disconnection_Status are

zero (0) for no error, otherwise they are HCI Error Codes (see

section 2.2). Note, in the Data Event, the DataBuffer is not a

pointer, but the actual data itself. Therefore the structure will be

variable in size. A macro exists,

 SCO_DATA_INDICATION_EVENT_SIZE(DataLength)

to assist in calculating the total size (in bytes) of the structure.

The DataLength argument is the size (in bytes) of the amount of

data that is or will be put into the Data Event structure.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

SCO_Register_Synchronous_Connect_Request_Callback

Registers a SCO and eSCO Connection Request Callback with the Bluetooth protocol

stack identified by BluetoothStackID. If this call is successful, the callback function will

be notified of subsequent Asynchronous eSCO and SCO Connection Requests.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 484 of 737 January 10, 2014

Prototype:

int BTPSAPI SCO_Register_Synchronous_Connect_Request_Callback(unsigned int

BluetoothStackID, SCO_Connect_Request_Callback_t SCO_Connect_Request_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

SCO_Connect_Request_Callback Callback function that is to be registered.

A Connection can ONLY be accepted/rejected in the

context of this callback function This function MUST

NOT Block and wait for events that can only be satisfied

by Receiving other Bluetooth Stack Events. A Deadlock

WILL occur because other Callbacks might not be issued

while this function is currently outstanding.

typedef void (BTPSAPI

*SCO_Connect_Request_Callback_t)(

unsigned int BluetoothStackID,

SCO_Connect_Request_Data_t

*SCO_Connect_Request_Data,

unsigned long CallbackParameter);

CallbackParameter User defined parameter that will be passed to the callback

function when invoked.

Return:

Positive non-zero SCOCallbackID if successful.

 Negative Error code if not successful.

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Register_Connect_Request_Callback

This function is responsible for registering a SCO Connection Request Callback with the

specified Bluetooth Protocol Stack (specified via the BluetoothStackID parameter). Once

this Callback is installed, the caller will be notified of asynchronous SCO Connection

Requests when they occur.

Prototype:

int BTPSAPI SCO_Register_Connect_Request_Callback(unsigned int BluetoothStackID,

SCO_Connect_Request_Callback_t SCO_Connect_Request_Callback,

unsigned long CallbackParameter);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 485 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize

SCO_Connect_Request_Callback User-supplied callback function.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be

passed back to the user in the callback function with

each packet.

Return:

Positive non-zero value if successful which is the registration ID (SCOCallbackID) that is

used to unregister the Callback.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CALLBACK_INFORMATION

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Un_Register_Callback

Remove a previously registered SCO Connection Request Callback.

Prototype:

int BTPSAPI SCO_Un_Register_Callback(unsigned int BluetoothStackID,

unsigned int SCOCallbackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOCallbackID Identifier returned from a successful callback registration.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_CALLBACK_INFORMATION

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 486 of 737 January 10, 2014

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

2.6.2 SCO Commands

The SCO layer API provides the commands listed in the table below, which are described in the

text which follows.

Command Description

SCO_Setup_Synchronous_Connec

tion

Adds SCO and eSCO connection to specified Bluetooth

device.

SCO_Add_Connection Add an SCO Connection with a remote device.

SCO_Close_Connection Close an SCO Connection.

SCO_Accept_Synchronous_Conne

ction

Accepts or rejects a SSCO/eSCO Connection Request.

SCO_Accept_Connection Accept or reject an SCO Connection request from a remote

device.

SCO_Modify_Synchronous_Conn

ection

Used to modify existing synchronous connection.

SCO_Send_Data Send SCO data to an open SCO Connection (immediately).

SCO_Set_Queue_Threshold Sets the current SCO Queuing Threshold information.

SCO_Get_Queue_Threshold Queries the current SCO Queuing Threshold information.

SCO_Query_Packet_Information Query the current HCI SCO Packet Size/Buffer

Information.

SCO_Query_Data_Format Query the current HCI SCO Data Format Information.

SCO_Change_Data_Format Change the current HCI SCO Data Format Information.

SCO_Change_Buffer_Size Change the current SCO Transmit Buffer (Queue) Size.

SCO_Purge_Buffer Flush all Data queued in SCO Transmit Buffer.

SCO_Queue_Data Queue Data into SCO Transmit Buffer.

SCO_Change_Packet_Information Override the HCI SCO Packet Size/Buffer information that

is used by the SCO layer.

SCO_Set_Connection_Mode Sets SCO connection mode.

SCO_Set_Physical_Transport Informs SCO module about the type of Physical Transport

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 487 of 737 January 10, 2014

Command Description

that will be use for SCO data.

SCO_Setup_Synchronous_Connection

This function adds an SCO and eSCO connection to the remote device specified by

BD_ADDR. If successful the caller can pass the return value of this function to

CO_Close_Connection() function. Note, there must already be an ACL connection to the

specified Bluetooth device for this function to receive.

Prototype:

int BTPSAPI SCO_Setup_Synchronous_Connection (unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, SCO_Synchronous_Connection_Info_t

*SynchronousConnectionInfo, SCO_Connection_Callback_t SCO_Connection_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of the remote device to setup

SCO/eSCO connection to.

SynchronousConnectionInfo The connection parameters for the connection. To use defaults

this parameter may be set to NULL.

SCO_Connection_Callback Callback function to be installed for this connection. This is

called when a SCO/eSCO event occurs on the specified

SCO/eSCO connection.

CallbackParameter Parameter that is passed to the callback function when a

SCO/eSCO event occurs.

Return:

Non-zero, positive value on success which indicates the SCO/eSCO Connection ID of the

specified Connection Link. Note that this does NOT mean that the SCO/eSCO Connection

has been established in the case of a Accept. This information is returned in the specifed

Connection Callback with the Connection Result.

Negative error code indicating a SCO/eSCO was not able to be established with the

specified Bluetooth device.

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 488 of 737 January 10, 2014

SCO_Add_Connection

This command is used to add an SCO Connection with another Bluetooth device. Note,

there must already be an ACL Link with the Bluetooth device, or this request will fail.

Prototype:

int BTPSAPI SCO_Add_Connection(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, SCO_Connection_Callback_t SCO_Connection_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device to make the connection to.

SCO_Connection_Callback Function to call to report connection status/actions to.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

If successful, a positive, non-zero value is returned which is the SCO Connection ID.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_MAX_SCO_CONNECTIONS

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:
etSCO_Connect_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Close_Connection

Close an existing SCO Connection. Once this function is called for the specified SCO

Connection ID, that SCO Connection is no Longer valid (if established) and the SCO

Connection Callback that was registered with the Connection will no longer be called.

Prototype:

int BTPSAPI SCO_Close_Connection(unsigned int BluetoothStackID,

unsigned int SCOConnectionID, unsigned int Disconnect_Status);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 489 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The identifier for this connection which was returned from a

successful call to SCO_Add_Connection.

Disconnect_Status The reason for the disconnection, which is one of the HCI Error

Codes (see Section 2.2).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Accept_Synchronous_Connection

The following function is responsible for Accepting or Rejecting a SCO/eSCO Connection

Request. This function CAN ONLY be called in the Context of a SCO/eSCO Connection

Request Callback.

Prototype:

int BTPSAPI SCO_Accept_Synchronous_Connection (unsigned int BluetoothStackID,

unsigned int SCOConnectionID, SCO_Synchronous_Connection_Info_t

*SynchronousConnectionInfo, unsigned int RejectReason, SCO_Connection_Callback_t

SCO_Connection_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID Obtained via the SCO_Connection_ID member of the

SCO_Connect_Request Data member of the SCO Connect

Request Event Data. This Data is specified in a SCO/eSCO

Callback, so the caller will only be able to issue this function if

a SCO/eSCO Callback has been installed.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 490 of 737 January 10, 2014

SynchronousConnectionInfo Required parameters of the connection, if set to NULL default

values will be used.

RejectReason Specifies whether or not the caller has Accepted or Rejected the

SCO Connection Request. If this parameter is zero, then the

SCO Request will be accepted, else this parameter represents

the Rejection Reason (defined in the Bluetooth HCI

specification Error Codes).

SCO_Connection_Callback Callback function that is to be installed for the accepted

SCO/eSCO connection. Ignored if the connection is being

rejected, MUST be valid if the connection is being accepted.

This Callback Function (and specified Callback Parameter) will

be used when any SCO/eSCO Event occurs on the accepted

SCO/eSCO Connection (if accepted).

CallbackParameter Parameter to the callback function. Will be ignored if the

connection is being reject, otherwise must be valid.

Return:

Zero if successful, meaning the connection has been accepted or rejected,.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_ACTION_NOT_ALLOWED

BTPS_ERROR_MAX_SCO_CONNECTIONS

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:
etSCO_Connect_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Accept_Connection

This command is used to accept or reject a request from a remote Bluetooth device to

establish an SCO Connection. This function must be called in the context of an SCO

Connection Request Callback or it will have no effect.

Prototype:

int BTPSAPI SCO_Accept_Connection(unsigned int BluetoothStackID,

unsigned int SCOConnectionID, unsigned int RejectReason,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 491 of 737 January 10, 2014

SCO_Connection_Callback_t SCO_Connection_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The unique identifier for this SCO Connection. This is provided

to the SCO Connection Request Callback function.

RejectReason If the connection is being accepted, this parameter is set to zero.

If the connection is being rejected, this parameter is set to one of

the HCI Error Codes (see Section 2.2).

SCO_Connection_Callback Function to call to report connection status/actions to.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

If successful, a positive, non-zero value is returned which is the SCO Connection ID.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_MAX_SCO_CONNECTIONS

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Modify_Synchronous_Connection

This function is used to modify an existing synchronous connection. Note, only eSCO

connections can be modified.

Prototype:

int BTPSAPI SCO_Modify_Synchronous_Connection (unsigned int BluetoothStackID,

unsigned int SCOConnectionID, Word_t MaxLatency, SCO_Retransmission_Effort_t

RetransmissionEffort);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 492 of 737 January 10, 2014

SCOConnectionID Connection ID obtained via a successful call to

SCO_Setup_Synchronous_Connection().

MaxLatency The value in milliseconds representing the upper limit of the

sum of the synchronous interval.

RetransmissionEffort The ReTransmissionEffort modes for a eSCO connection. May

be one of the following:

reNoRetransmissions

reRetransmitOptimizePowerConsumption

reRetransmitOptimizeLinkQuality

reDontCare

Return:

If successful, a positive, non-zero value is returned. This means that the command was

successfully sent to the device. The actual success of modifying the connection will be in

the status of etSynchronous_Connection_Changed_Event returned from the

SCO_Connection_Callback passed in during SCO_Setup_Synchronous_Connection().

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INVALID_MODE

Possible Events:
etSynchronous_Connection_Changed_Event

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Send_Data

Send SCO Data to the specified SCO Connection. This function segments the data being

sent into packet sizes that acceptable to the Bluetooth device.

Notes:

If this function returns BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE then the

application must wait for the etSCO_Transmit_Buffer_Empty_Indication event and re-

transmit the selected data.

Prototype:

int BTPSAPI SCO_Send_Data(unsigned int BluetoothStackID,

unsigned int SCOConnectionID, Byte_t SCODataLength, Byte_t *SCOData)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 493 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The unique identifier for this SCO Connection. This is provided

to the SCO Connection Request Callback function.

SCODataLength Length of the Data referenece by SCOData.

SCOData Pointer to the data to send.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:
etSCO_Transmit_Buffer_Empty_Indication

etSCO_Disconnect

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Set_Queue_Threshold

This command is used to set the SCO queue threshold. The queue threshold is globally

applicable to all SCO connections.

Prototype:

int BTPSAPI SCO_Set_Queue_Threshold (unsigned int BluetoothStackID,

 SCO_Queueing_Parameters_t *QueueingParameters)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

QueueingParameters Pointer to structure that contains the queue threshold

information to set. This structure is defined as follows:
typedef struct

{

 Word_t QueueLimit;

 Word_t LowThreshold;

} SCO_Queueing_Parameters_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 494 of 737 January 10, 2014

where QueueLimit specifies the maximum number outstanding

HCI SCO Packets that are acceptable for each SCO connection,

and LowThreshold is the point after which a transmit buffer

empty will be dispatched (if the buffer is ever considered fully

full). QueueLimit must be less than or equal to the

MaximumOutstandingSCOPackets member that is returned

from the SCO_Query_Packet_Information() API and

LowThreshold must be less than QueueLimit.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SCO_Get_Queue_Threshold

This command is used to get the current SCO queue threshold.

Prototype:

int BTPSAPI SCO_Get_Queue_Threshold (unsigned int BluetoothStackID,

 SCO_Queueing_Parameters_t *QueueingParameters)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

QueueingParameters Pointer to structure to return the current SCO queue threshold

information. This structure is defined as follows:
typedef struct

{

 Word_t QueueLimit;

 Word_t LowThreshold;

} SCO_Queueing_Parameters_t;

where QueueLimit specifies the maximum number outstanding

HCI SCO Packets that are acceptable for each SCO connection,

and LowThreshold is the point after which a transmit buffer

empty will be dispatched (if the buffer is ever considered fully

full).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 495 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SCO_Query_Packet_Information

This command is used to query the current HCI SCO Packet/Buffer Information. The

information returned from this function is applicable to ALL SCO Channels and cannot be

different for individual SCO Channels.

Prototype:

int BTPSAPI SCO_Query_Packet_Information(unsigned int BluetoothStackID,

 SCO_Packet_Information_t *SCO_Packet_Information)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Packet_Information Pointer to buffer that is to receive the current SCO Packet

information. This structure is defined as follows:

typedef struct

{

 unsigned int MaximumOutstandingSCOPackets;

 unsigned int MaximumSCOPacketSize;

} SCO_Packet_Information_t;

where MaximumOutstandingSCOPackets specifies the number

outstanding HCI SCO Packets that are acceptable to the

Bluetooth device (as reported by the Bluetooth device), and

MaximumSCOPacketSize is the maximum size of an individual

SCO Packet (in Bytes) that can be accepted by the Bluetooth

device (as reported by the Bluetooth device).

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 496 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

2. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SCO_Query_Data_Format

This command is used to query the current HCI SCO Data Format. The information

returned from this function is applicable to ALL SCO Channels and cannot be different

for individual SCO Channels.

Prototype:

int BTPSAPI SCO_Query_Data_Format(unsigned int BluetoothStackID,

 SCO_Data_Format_t * SCO_Data_Format)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Data_Format Pointer to buffer that is to receive the current SCO data format

information. This structure is defined as follows:

typedef struct

{

 SCO_Data_Encoding_Type_t SCO_Data_Encoding_Type;

 SCO_Data_Encoding_Format_t SCO_Data_Encoding_Format;

 SCO_PCM_Data_Sample_Size_t

SCO_PCM_Data_Sample_Size;

 SCO_Air_Encoding_Type_t SCO_Air_Encoding_Type;

} SCO_Data_Format_t;

where the SCO_Data_Encoding_Type member defines the

encoding type of the input/output data and is defined to be one

of the following types:

deLinearPCM

deuLaw

deALaw

The SCO_Data_Encoding_Format member defines the

encoding format of the input/output data and is defined to be

one of the following types:

ef1sComplement

ef2sComplement

efSignMagnitude

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 497 of 737 January 10, 2014

efUnsigned

The SCO_PCM_Data_Sample_Size member is valid only if the

Data Encoding type specified Linear PCM Audio. When this

member is valid it is defined to be one of the following types:

ds8Bit

ds16Bit

The SCO_Air_Encoding_Type member specifies the encoding

type that is to be used over the Bluetooth Link (over the Air

Encoding). This member is defined to be one of the following

types:

aeCVSD

aeuLaw

aeALaw

aeNone

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Change_Data_Format

This command is used to change the current HCI SCO Data Format. The information that

is changed with this function is applicable to ALL SCO Channels and cannot be different

for individual SCO Channels. Note some of the formats that this function allows to be set

may note be supported by all Bluetooth devices.

Prototype:

int BTPSAPI SCO_Change_Data_Format(unsigned int BluetoothStackID,

 SCO_Data_Format_t * SCO_Data_Format)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Data_Format Pointer to buffer that specifies the new SCO data format

information. This structure is defined as follows:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 498 of 737 January 10, 2014

typedef struct

{

 SCO_Data_Encoding_Type_t SCO_Data_Encoding_Type;

 SCO_Data_Encoding_Format_t SCO_Data_Encoding_Format;

 SCO_PCM_Data_Sample_Size_t

SCO_PCM_Data_Sample_Size;

 SCO_Air_Encoding_Type_t SCO_Air_Encoding_Type;

} SCO_Data_Format_t;

where the SCO_Data_Encoding_Type member defines the

encoding type of the input/output data and is defined to be one

of the following types:

deLinearPCM

deuLaw

deALaw

The SCO_Data_Encoding_Format member defines the

encoding format of the input/output data and is defined to be

one of the following types:

ef1sComplement

ef2sComplement

efSignMagnitude

efUnsigned

The SCO_PCM_Data_Sample_Size member is valid only if the

Data Encoding type specified Linear PCM Audio. When this

member is valid it is defined to be one of the following types:

ds8Bit

ds16Bit

The SCO_Air_Encoding_Type member specifies the encoding

type that is to be used over the Bluetooth Link (over the Air

Encoding). This member is defined to be one of the following

types:

aeCVSD

aeuLaw

aeALaw

aeNone

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ HCI_RESPONSE_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 499 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Change_Buffer_Size

This command is used to change the buffer size of an outgoing SCO Transmit Buffer.

This Buffer is set for an individual SCO Connection and is available for queuing SCO

Data into. Once Data is queued into the SCO buffer, it will be sent automatically by the

SCO Module to the Bluetooth device when required. This mechanism allows an

application the ability to simply fill up a buffer (and keep the buffer occupied with data)

and allowing the SCO Module to handle all Bluetooth Flow Control issues. The default

value for the Buffer Size is zero which means NO queue is available. When there is no

queue, NO data can be queued, only sent via the SCO_Send_Data function. The buffer

size can be changed dynamically, however, changing the buffer size deletes all current

information that is contained in the buffer. Therefore, the buffer size should only be

changed when the application knows the buffer is empty.

Prototype:

int BTPSAPI SCO_Change_Buffer_Size(unsigned int BluetoothStackID,

unsigned int SCOConnectionID, unsigned int TransmitBufferSize)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The unique identifier for this SCO Connection. This is provided

to the SCO Connection Request Callback function.

TransmitBufferSize Size (in bytes) to change the SCO Output Buffer (Queue) size

to.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 500 of 737 January 10, 2014

SCO_Purge_Buffer

This command is used to clear the current contents of an outgoing SCO Transmit Buffer.

This Buffer is active for an individual SCO Connection only and not all SCO Connections.

Currently the only supported action is to delete all data that is currently present in the

output buffer. Waiting for all data in the output buffer to be flushed is not supported.

After this function is called, the SCO Output Data buffer is completely empty.

Prototype:

int BTPSAPI SCO_Purge_Buffer (unsigned int BluetoothStackID,

unsigned int SCOConnectionID, unsigned int PurgeBufferMask)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The unique identifier for this SCO Connection. This is provided

to the SCO Connection Request Callback function.

PurgeBufferMask Mechanism with which to flush the Output buffer. Currently

the following values are supported:

 SCO_PURGE_MASK_TRANSMIT_ABORT_BIT

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Queue_Data

This command is used to queued outgoing SCO Data into a previously established SCO

Buffer. This buffer must have been established via a successful call to the

SCO_Change_Buffer_Size function. Data queued into this buffer is sent to the Bluetooth

device via the SCO Module. This eliminates the need for the application to worry about

when (and how much) data to send to the Bluetooth device. The application, using this

mechanism, only needs to keep the buffer updated with outgoing SCO Data and the SCO

Module will take care of sending all SCO Data to the Module.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 501 of 737 January 10, 2014

Note: If this function is unable to queue all of the data that was specified (via the

SCODataLength parameter) because of a full Transmit Buffer condition, this function will

return the number of bytes that were actually sent (zero or more, but less than the

DataLength parameter value). When this happens (and only when this happens), the user

can expect to be notified when the Transmit buffer is able to queue data again via the the

etSCO_Transmit_Buffer_Empty_Indication SCO Event. This will allow the user a

mechanism to know when the Transmit Buffer is empty so that more data can be sent.

Prototype:

int BTPSAPI SCO_Queue_Data(unsigned int BluetoothStackID,

unsigned int SCOConnectionID, unsigned int SCODataLength, Byte_t *SCOData)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCOConnectionID The unique identifier for this SCO Connection. This is provided

to the SCO Connection Request Callback function.

SCODataLength The number of data bytes to queue

SCOData The data buffer that contains the data to queue

Return:

Positive or zero if successful indicating the number of data bytes actually queued. See

note above, for situations when this value is less than SCODataLength.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Change_Packet_Information

This command is used to override the current HCI SCO Packet/Buffer Information. The

information changed by this function is applicable to ALL SCO Channels and cannot be

different for individual SCO Channels. This function is provided because it has been

found that some Bluetooth HCI SCO implementations incorrectly report the parameters

that can actually be used. This function allows the values that are used internally to differ

from the values that are reported from the Bluetooth device via the

HCI_Read_Buffer_Size HCI commands.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 502 of 737 January 10, 2014

Prototype:

int BTPSAPI SCO_Change_Packet_Information(unsigned int BluetoothStackID,

 SCO_Packet_Information_t *SCO_Packet_Information)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SCO_Packet_Information Pointer to buffer that contains the new SCO Packet information.

This structure is defined as follows:

typedef struct

{

 unsigned int MaximumOutstandingSCOPackets;

 unsigned int MaximumSCOPacketSize;

} SCO_Packet_Information_t;

where MaximumOutstandingSCOPackets specifies the number

outstanding HCI SCO Packets that are acceptable to the

Bluetooth device, and MaximumSCOPacketSize is the

maximum size of an individual SCO Packet (in Bytes) that can

be accepted by the Bluetooth device.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SCO_Set_Connection_Mode

This function is responsible for setting the SCO Connection Mode.

Prototype:

int BTPSAPI SCO_Set_Connection_Mode(unsigned int BluetoothStackID,

SCO_Connection_Mode_t ConnectionMode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 503 of 737 January 10, 2014

ConnectionMode The second parameter is the SCO Connection Mode to set. May

be one of the following:

scmDisableConnections

scmEnableConnections

 Specifying scmDisableConnections as the Connection Mode

shall disconnect all currently on going connections and

disallow all new connection requests.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SCO_Set_Physical_Transport

This function tells the SCO module about the type of Physical Transport that will be used

to transport SCO Data. There is no defined way in the Bluetooth specification to

determine this data as it depends on the physical Bluetooth Hardware configuration. The

Physical Transport can ONLY be changed if there are NO active SCO connections.

Prototype:

int BTPSAPI SCO_Set_Physcial_Transport(unsigned int BluetoothStackID,

SCO_Physical_Transport_t PhysicalTransport);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

PhysicalTransport The Physical Transport value to set. Can be one of the

following:

sptCodec

sptHCI

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 504 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SCO_NOT_INITIALIZED

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_MODE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 505 of 737 January 10, 2014

3. Profile Interfaces

The following Profile Interfaces are included in the Stonestreet One Bluetooth Stack Protocol at

present and the sections they are documented in are:

3.1 GAP Programming Interface

Error! Reference source not found.

3.3 GOEP Programming Interface

3.4 OTP Programming Interface

3.1 GAP Programming Interface

The GAP (Generic Access Profile) programming interface provides features related to: (1)

discovery of other Bluetooth devices, (2) link management aspects of connecting to those devices,

and (3) using different levels of security. Commonly used data types are listed in section 3.1.1.

Section 3.1.2 lists the GAP function calls. Section 3.1.3 lists the GAP event callback prototypes.

Section 3.1.4 lists all supported GAP events. The actual prototypes and constants outlined in this

section can be found in the GAPAPI.H header file in the Bluetopia distribution.

3.1.1 Commonly Used GAP Data Types

The following data types and structures are commonly used in the GAP functions. The list of

data types covered in this section are listed in the table below.

Data Type Description

GAP_Authentication_Information_t Structure to hold GAP authentication information to be

set and/or returned.

GAP_LE_Authentication_Response_

Information_t

Structure to hold GAP LE authentication information to

be set and/or returned.

GAP_Authentication_Information_t

Structure to hold GAP authentication information to be set and/or returned. For GAP

authentication types that are rejections, the Authentication_Data_Length member is set to

zero and all data members can be ignored (since non are valid). Currently the

Bonding_Type member of the IO_Capabilities member is ignored. The correct value is

calculated and inserted automatically.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 506 of 737 January 10, 2014

Structure:

typedef

{

 GAP_Authentication_Type_t GAP_Authentication_Type;

 Byte_t Authentication_Data_Length;

 union

 {

 PIN_Code_t PIN_Code;

 Link_Key_t Link_Key;

 Boolean_t Confirmation;

 DWord_t Passkey;

 GAP_Keypress_t Keypress;

 GAP_Out_Of_Band_Data_t Out_Of_Band_Data;

 GAP_IO_Capabilities_t IO_Capabilities;

 } Authentication_Data;

} GAP_Authentication_Information_t;

Fields:

GAP_Authentication_Type_t The different authentication methods that can be used and

which member of the union should be used. Possible values

are:

atLinkKey

atPINCode

atUserConfirmation

atPassKey

atKeypress

atOutOfBandData

atIOCapabilities

Authentication_Data_Length Length of authentication data. For rejected authentication

types this value will be zero (0), and the data can/should be

ignored.

PIN_Code_t Up to 16 byte Personal Identification Number.

Link_Key_t Up to 16 byte link key.

Confirmation Used during user confirmation to specify the confirmation

result.

Passkey 5 digit pass key (00, 000 – 99, 999)

Keypress Specifies key press data. This value will be one of the

following:

kpEntryStarted

kpDigitEntered

kpDigitErased

kpCleared

kpEntryCompleted

Out_Of_Band_Data Specifies out of band (OOB) data. This structure has the

following format:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 507 of 737 January 10, 2014

typedef struct

{

 Simple_Pairing_Hash_t

Simple_Pairing_Hash;

 Simple_Pairing_Randomizer_t

Simple_Pairing_Randomizer;

} GAP_Out_Of_Band_Data_t;

IO_Capabilities Specifies I/O capabilities of the device. This value will be

one of the following:

icDisplayOnly

icDisplayYesNo

icKeyboardOnly

icNoInputNoOutput

GAP_LE_Authentication_Response_Information_t

Structure to hold GAP LE authentication information to be set and/or returned. For GAP

authentication types that are rejections, the Authentication_Data_Length member is set to

zero and all data members can be ignored (since non are valid).

Structure:

typedef struct

{

 GAP_LE_Authentication_Response_Type_t GAP_LE_Authentication_Type;

 Byte_t Authentication_Data_Length;

 union

 {

 GAP_LE_Long_Term_Key_Information_t Long_Term_Key_Information;

 GAP_LE_Pairing_Capabilities_t Pairing_Capabilities;

 GAP_LE_OOB_Data_t Out_Of_Band_Data;

 DWord_t Passkey;

 Byte_t Error_Code;

 GAP_LE_Encryption_Information_t Encryption_Information;

 GAP_LE_Identity_Information_t Identity_Information;

 GAP_LE_Signing_Information_t Signing_Information;

 } Authentication_Data;

} GAP_LE_Authentication_Response_Information_t;

Fields:

GAP_LE_Authentication_Type_t The different authentication methods that can be used

and which member of the union should be used.

Possible values are:

larLongTermKey

larOutOfBandData

larPairingCapabilities

larPasskey

larConfirmation

larError

larEncryptionInformation

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 508 of 737 January 10, 2014

larIdentityInformation

larSigningInformation

Authentication_Data_Length Length of authentication data. For rejected

authentication types this value will be zero (0), and the

data can/should be ignored.

Long_Term_Key_Information Contains the long term key information. This structure

has the following format:

typedef struct

{

 Byte_t Encryption_Key_Size;

 Long_Term_Key_t Long_Term_Key;

} GAP_LE_Long_Term_Key_Information_t;

Pairing_Capabilities Specifies the pairing capabilities of the local host. This

structure is defined as follows:

typedef struct

{

 GAP_LE_IO_Capability_t IO_Capability;

 Boolean_t OOB_Present;

 GAP_LE_Bonding_Type_t Bonding_Type;

 Boolean_t MITM;

 Byte_t

 Maximum_Encryption_Key_Size;

 GAP_LE_Key_Distribution_t Receiving_Keys;

 GAP_LE_Key_Distribution_t Sending_Keys;

} GAP_LE_Pairing_Capabilities_t;

Out_Of_Band_Data Specifies out of band (OOB) data. This structure has the

following format:

typedef struct

{

 Encryption_Key_t OOB_Key;

} GAP_LE_OOB_Data_t;

Passkey 6 digit pass key (000, 000 – 999, 999)

Error_Code Specifies result of an on-going authentication procedure.

Encryption_Information Specifies current encryption information. This structure

has the following format:

typedef struct

{

 Byte_t Encryption_Key_Size;

 Long_Term_Key_t LTK;

 Word_t EDIV;

 Random_Number_t Rand;

} GAP_LE_Encryption_Information_t;

Identity_Information Specifies current identity information. This structure

has the following format:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 509 of 737 January 10, 2014

typedef struct

{

 Encryption_Key_t IRK;

 GAP_LE_Address_Type_t Address_Type;

 BD_ADDR_t Address;

} GAP_LE_Identity_Information_t;

Signing_Information Specifies current signing information. This structure has

the following format:

typedef struct

{

 Encryption_Key_t CSRK;

} GAP_LE_Signing_Information_t;

3.1.2 GAP Functions

The available GAP functions are listed in the table below and are described in the text that

follows:

Function Description

GAP_Set_Discoverability_Mode Set the discoverability mode.

GAP_Query_Discoverability_Mode Read the current discoverability mode.

GAP_Set_Connectability_Mode Enable/disable connections to the local

device.

GAP_Query_Connectability_Mode Read the current connectability mode.

GAP_Set_Pairability_Mode Enable/disable pairability mode.

GAP_Query_Pairability_Mode Read the current the pairability mode.

GAP_Set_Authentication_Mode Enable/disable authentication.

GAP_Query_Authentication_Mode Read the current authentication mode.

GAP_Set_Encryption_Mode Enable/disable encryption.

GAP_Cancel_Set_Encryption _Mode Cancel any future callback notifications

associated with changing the encryption

mode.

GAP_Query_Encryption_Mode Read the current encryption mode.

GAP_Authenticate_Remote_Device Authenticate the indicated remote device

GAP_Cancel_Authenticate_Remote_Device Cancel the authentication process on the

indicated remote Bluetooth device.

GAP_Register_Remote_Authentication Register a GAP Event Callback function

to accept authentication requests from

remote devices.

GAP_Un_Register_Remote_Authentication Un-register a callback function for

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 510 of 737 January 10, 2014

authentication requests.

GAP_Authentication_Response Send the authentication information

requested by a remote Bluetooth device.

GAP_Perform_Inquiry Initiate an inquiry scan for other

Bluetooth devices.

GAP_Cancel_Inquiry Cancel an inquiry scan.

GAP_Set_Inquiry_Mode Set the inquiry mode.

GAP_Query_Inquiry_Mode Retrieve the inquiry mode.

GAP_Query_Remote_Device_Name Retrieve the user-friendly name of a

remote Bluetooth device.

GAP_Cancel_Query_Remote_Device_Name Cancel any future callback notifications

associated with a specific remote name

request.

GAP_Query_Remote_Features Retrieve features of the remote device.

GAP_Query_Remote_Version_Information Retrieve version information of the

remote device.

GAP_Initiate_Bonding Initiate a bonding procedure of the type

requested.

GAP_Cancel_Bonding Cancel a bonding process that was

previously started.

GAP_End_Bonding Terminate a link established by a call to

GAP_Initiate_Bonding.

GAP_Query_Local_BD_ADDR Get the local Bluetooth device address.

GAP_Set_Class_Of_Device Change the device class of the local

Bluetooth device.

GAP_Query_Class_Of_Device Read the current class of device of the

local Bluetooth device.

GAP_Set_Local_Device_Name Change the user-friendly name of the

local Bluetooth device.

GAP_Query_Local_Device_Name Read the current user-friendly name of

the local Bluetooth device.

GAP_Disconnect_Link Terminate an existing Bluetooth ACL

connection.

GAP_Query_Connection_Handle Query the ACL connection handle of a

current connection to a remote Bluetooth

device.

GAP_Query_Local_Out_Of_Band_Data Retrive Out of band data from local

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 511 of 737 January 10, 2014

device.

GAP_Refresh_Encryption_Key Refesh the encryption key.

GAP_Read_Extended_Inquiry_Information Get the extended inquiry information.

GAP_Write_Extended_Inquiry_Information Write the extended inquiry information

for the local device.

GAP_Convert_Extended_Inquiry_Response_Data Convert the extended inquiry response

data.

GAP_Parse_Extended_Inquiry_Response_Data Parse the fields of the extended inquiry

response data.

GAP_LE_Create_Connection Scan and connect to a remote Bluetooth

LE device.

GAP_LE_Cancel_Create_Connection Cancel an on-going Bluetooth LE

connection request.

GAP_LE_Disconnect Disconnect from a currently connected

Bluetooth LE device.

GAP_LE_Read_Remote_Features Query the remote LE features of a

currently connected Bluetooth LE device.

GAP_LE_Perform_Scan Perform an active or passive scan for

Bluetooth LE devices.

GAP_LE_Cancel_Scan Cancel an on-going Bluetooth LE scan

procedure.

GAP_LE_Set_Advertising_Data Set the Bluetooth LE advertising data that

is used when advertising is enabled.

GAP_LE_Convert_Advertising_Data Convert the LE advertising data.

GAP_LE_Parse_Advertising_Data Parse the fields of the advertising data.

GAP_LE_Set_Scan_Response_Data Set the Bluetooth LE scan response data

that is used when an active scan is

detected.

GAP_LE_Convert_Scan_Response_Data Convert the LE scan response data.

GAP_LE_Parse_Scan_Response_Data Parse the fields of the scan response data.

GAP_LE_Advertising_Enable Instruct the local Bluetooth LE device to

begin advertising.

GAP_LE_Advertising_Disable Instruct the local Bluetooth LE device to

stop advertising.

GAP_LE_Generate_Non_Resolvable_Address Generate a non-resolvable device address.

GAP_LE_Generate_Static_Address Generate a static private address.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 512 of 737 January 10, 2014

GAP_LE_Generate_Resolvable_Address Generate a resolvable device address.

GAP_LE_Resolve_Address Resolve a specified resolvable address.

GAP_LE_Set_Random_Address Instruct local Bluetooth LE device to use

the specified random address.

GAP_LE_Add_Device_To_White_List Add one (or more) devices to the

Bluetooth LE controller white list.

GAP_LE_Remove_Device_From_White_List Remove one (or more) devices from the

Bluetooth LE controller white list.

GAP_LE_Read_White_List_Size Determine the number of devices the local

Bluetooth LE controller can support in the

controller white list.

GAP_LE_Set_Pairability_Mode Set the GAP LE pairability mode for the

local device.

GAP_LE_Register_Remote_Authentication Register with the local GAP LE entity to

receive authentication events.

GAP_LE_Un_Register_Remote_Authentication Un-register for authentication events.

GAP_LE_Pair_Remote_Device Begin a pairing process with the specified

remote Bluetooth LE device (master

only).

GAP_LE_Authentication_Response Respond to a remote authentication

request.

GAP_LE_Reestablish_Security Re-establish previously established

security.

GAP_LE_Request_Security Request the master to re-establish security

(slave only).

GAP_LE_Set_Fixed_Passkey Allows a fixed passkey to be used when

the local GAP LE entity is chosen to

display a passkey during pairing.

GAP_LE_Query_Encryption_Mode Query the encryption mode of a specified

LE connection.

GAP_LE_Query_Connection_Handle Query the connection handle of a

specified LE connection.

GAP_LE_Generate_Long_Term_Key Generate a long term key pairing key.

GAP_LE_Regenerate_Long_Term_Key Re-generate a long term pairing key.

GAP_LE_Diversify_Function Utility function which performs the

diversify function which is used during

key management.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 513 of 737 January 10, 2014

GAP_LE_Connection_Parameter_Update_Request Request that the master update the current

connection parameters (slave only).

GAP_LE_Connection_Parameter_Update_Response Respond to a request from a slave to

update the connection parameters (master

only).

GAP_Set_Discoverability_Mode

The following function is provided to set the discoverability mode of the local Bluetooth

device specified by the Bluetooth Protocol Stack that is specified by the Bluetooth

protocol stack ID. The second parameter specifies the discoverability mode to place the

local Bluetooth device into, and the third parameter species the length of time (in seconds)

that the local Bluetooth device is to be placed into the specified discoverable mode (if

mode is not specified as non discoverable). At the end of this time (provided the time is

not infinite), the local Bluetooth device will return to non discoverable mode.

Prototype:

int BTPSAPI GAP_Set_Discoverability_Mode(unsigned int BluetoothStackID,

GAP_Discoverability_Mode_t GAP_Discoverability_Mode,

unsigned int Max_Discoverable_Time);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Discoverability_Mode Value that defines the limits to being discovered by other

Bluetooth devices. The following modes are currently defined:

dmNonDiscoverableMode

dmLimitedDiscoverableMode

dmGeneralDiscoverableMode

Max_Discoverable_Time Length of time in seconds that the unit will be in the specified

discoverable mode (not applicable for non discoverable mode).

Return:

Zero (0) if the discoverability mode was successfully changed.

Negative if an error occurred and the mode was not changed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INTERNAL_ERROR

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 514 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Discoverability_Mode

This function allows a means to query the current discoverability mode parameters for the

local Bluetooth device. The second parameter to this function is a pointer to a variable

that will receive the current discoverability mode of the Bluetooth device, and the last

parameter specifies a pointer to a variable that will receive the current discoverability

mode maximum discoverability mode timeout value. Both of these parameters must be

valid (i.e. non-NULL) and upon successful completion of this function will contain the

current discoverability mode parameters of the local Bluetooth device.

Prototype:

int BTPSAPI GAP_Query_Discoverability_Mode(unsigned int BluetoothStackID,

GAP_Discoverability_Mode_t *GAP_Discoverability_Mode,

unsigned int *Max_Discoverable_Time);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Discoverability_Mode Pointer to a buffer to receive the value that defines the current

mode of discovery. The following modes are currently defined:

dmNonDiscoverableMode

dmLimitedDiscoverableMode

dmGeneralDiscoverableMode

Max_Discoverable_Time Pointer to a buffer to receive the length of time (in seconds) that

the unit was specified to be the discoverable mode.

Return:

Zero (0) if the discoverability mode was successfully retrieved.

Negative if an error occurred. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 515 of 737 January 10, 2014

GAP_Set_Connectability_Mode

This function is provided to set the connectability mode of the local Bluetooth device

specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack

ID. The second parameter specifies the connectability mode to place the local Bluetooth

device into.

Prototype:

int BTPSAPI GAP_Set_Connectability_Mode(unsigned int BluetoothStackID,

GAP_Connectability_Mode_t GAP_Connectability_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Connectability_Mode Value that defines the connectability mode (from other

Bluetooth devices). The following modes are currently defined:

cmNonConnectableMode

cmConnectableMode

Return:

Zero (0) if the connectability mode was successfully changed.

Negative if an error occurred and the Mode was not changed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Connectability_Mode

This function allows a means to query the current connectability mode for the local

Bluetooth device. The second parameter to this function is a pointer to a variable that will

receive the current connectability mode of the local Bluetooth device. The second

parameter must be valid (i.e. non-NULL), and upon successful completion of this function

will contain the current connectability mode of the local Bluetooth device.

Prototype:

int BTPSAPI GAP_Query_Connectability_Mode(unsigned int BluetoothStackID,

GAP_Connectability_Mode_t *GAP_Connectability_Mode);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 516 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Connectability_Mode Pointer to a buffer to receive the value that defines the current

mode of connectability. The following modes are currently

defined:

cmNonConnectableMode

cmConnectableMode

Return:

Zero (0) if the Connectability Mode was successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Set_Pairability_Mode

The following function is provided to set the pairability mode of the local Bluetooth

device. The second parameter specifies the pairability mode to place the local Bluetooth

device into.

Note:

If secure simple pairing (SSP) pairing mode is specified, then SSP *MUST* be used for

all pairing operations. The device can be placed into non pairable mode after this,

however, if pairing is re-enabled, it *MUST* be set to pairable with SSP enabled.

Prototype:

int BTPSAPI GAP_Set_Pairability_Mode(unsigned int BluetoothStackID,

GAP_Pairability_Mode_t GAP_Pairability_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Pairability_Mode Value that defines the pairability mode (to other Bluetooth

devices). The following modes are currently defined:

pmNonPairableMode

pmPairableMode

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 517 of 737 January 10, 2014

pmPairableMode_EnableSecureSimplePairing

Return:

Zero (0) if the pairability mode was successfully changed.

Negative if an error occurred and the mode was not changed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_MODE

Possible Events:

etAuthentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Pairability_Mode

This function is provided to allow a means to query the current pairability mode for the

local Bluetooth device that is specified by the Bluetooth protocol stack that is associated

with the specified Bluetooth stack ID. The second parameter to this function is a pointer

to a variable that will receive the current pairability mode of the Bluetooth device. The

second parameter must be valid (i.e. non-NULL), and upon successful completion of this

function will contain the current pairability mode of the local Bluetooth device.

Prototype:

int BTPSAPI GAP_Query_Pairability_Mode(unsigned int BluetoothStackID,

GAP_Pairability_Mode_t *GAP_Pairability_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Pairability_Mode Pointer to a buffer to receive the value that defines the current

mode of pairability. The following modes are currently defined:

pmNonPairableMode

pmPairableMode

pmPairableMode_EnableSecureSimplePairing

Return:

Zero (0) if the pairability mode was successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 518 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Set_Authentication_Mode

This function is provided to set the authentication mode of the local Bluetooth device

specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack ID.

The second parameter specifies the authentication mode to place the local Bluetooth device

into.

Note:

If authentication is enabled for the local Bluetooth device, then this means that EVERY

connection (both incoming and outgoing) will require authentication at the link level.

Link level authentication is not recommended for Bluetooth version 2.1 and greater (devices

that support secure simple pairing (SSP)).

Prototype:

int BTPSAPI GAP_Set_Authentication_Mode(unsigned int BluetoothStackID,

GAP_Authentication_Mode_t GAP_Authentication_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

GAP_ Authentication _Mode Value that defines the authentication mode to set on the local

device. The following modes are currently defined:

amEnabled

amDisabled

Return:

Zero (0) if the authentication mode was successfully changed.

Negative if an error occurred and the mode was not changed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etAuthentication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 519 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_ Authentication _Mode

This function is provided to allow a means to query the current authentication mode for

the Bluetooth device that is specified by the Bluetooth protocol stack that is associated

with the specified Bluetooth stack ID. The second parameter to this function is a pointer

to a variable that will receive the current authentication mode of the Bluetooth device. The

second parameter must be valid (i.e. non-NULL), and upon successful completion of this

function will contain the current authentication mode of the local Bluetooth device.

Note:

If Authentication is enabled for the local Bluetooth device, then this means that EVERY

connection (both incoming and outgoing) will require authentication at the link level.

Link level authentication is not recommended for Bluetooth version 2.1 and greater (devices

that support secure simple pairing (SSP)).

Prototype:

int BTPSAPI GAP_Query_Authentication_Mode(unsigned int BluetoothStackID,

GAP_Authentication_Mode_t *GAP_Authentication_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via

a call to BSC_Initialize.

GAP_ Authentication _Mode Pointer to an area to receive the value that defines the current

mode of Authentication. The following modes are currently

defined:

amDisabled

amEnabled

Return:

Zero (0) if the authentication mode was successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 520 of 737 January 10, 2014

GAP_Set_Encryption_Mode

This function is provided to allow the setting of the encryption modes for either:

 the local Bluetooth device (link level encryption – all connections)

 the specified (connected) Bluetooth device address

The second parameter specifies the Bluetooth device address to apply the encryption mode

setting to (could be the local device or a connected remote device). The third parameter

specifies the state of the encryption mode to change to. The final two parameters specify

the GAP event callback to receive the encryption status when the encryption is changed.

This callback will contain the actual status of the encryption change (success or failure).

If the local device address is specified for the second parameter, then this function will set

the specified encryption mode for ALL future link level connections. When the local

device address is specified, the callback function and parameter are ignored, and the

function return value indicates whether or not the encryption change was successful (for

the local device for future connections). If the second parameter is NOT the local device

address then this function will set the encryption mode at the link level for the specified

Bluetooth link ONLY. A physical ACL link MUST already exist for this to work. The

actual status of the encryption change for this link will be passed to the callback

information that is required when using this function in this capacity. Because this

function is asynchronous in nature (when specifying a non local device address), this

function will notify the caller of the result via the installed callback. The caller is free to

cancel the encryption mode change at any time by issuing the

GAP_Cancel_Set_Encryption_Mode function and specifying the Bluetooth device address

of the Bluetooth device that was specified in this call. It should be noted that when the

callback is cancelled, the callback is the ONLY thing that is cancelled (i.e. the GAP

module still changes the encryption for the link, it's just that NO callback will be issued).

Prototype:

int BTPSAPI GAP_Set_Encryption_Mode(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Encryption_Mode_t GAP_Encryption_Mode,

GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_ Encryption _Mode Value that defines the Encryption mode of the Bluetooth device.

The following modes are currently defined:

emEnabled

emDisabled

GAP_Event_Callback Callback function that will be used to dispatch result

information to the upper layers.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the callbacks function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 521 of 737 January 10, 2014

Return:

Zero (0) if the encryption mode was successfully changed.

Negative if an error occurred and the mode was not changed. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etEncryption_Change_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Cancel_Set_Encryption _Mode

This function is provided to cancel the future calling of a previously registered encryption

mode callback that was installed via a successful call to the GAP_Set_Encryption_Mode

function. This function DOES NOT cancel the changing of the encryption mode for the

specified Bluetooth device, it ONLY cancels the callback notification. This function

accepts as input the Bluetooth protocol stack ID of the Bluetooth device that the

GAP_Set_Encryption_Mode function was previously issued, and the device address of the

Bluetooth device that the previous call was called with. The BD_ADDR parameter

MUST be valid, and cannot be the device address of the local Bluetooth device because

the local encryption mode change does not use the callback mechanism.

Prototype:

int BTPSAPI GAP_Cancel_Set_Encryption_Mode(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device that was previously

issued with the GAP_Set_Encryption_Mode function.

Return:

Zero (0) if the encryption mode callback was successfully canceled.

Negative if an error occurred and the request was not canceled. Possible values are:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_NO_CALLBACK_REGISTERED

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 522 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Encryption_Mode

This function is provided to allow a means to query the current encryption mode for the

Bluetooth device that is specified. The second parameter to this function is the Bluetooth

device address of the device to query the encryption state of. If the local Bluetooth device

address is specified for this parameter then the encryption information that is returned

represents the current encryption link level state of all future ACL connections (both

incoming and outgoing). The third parameter to this function is a pointer to a variable that

will receive the current encryption mode of the Bluetooth device/link. The third

parameter to this function must be valid (i.e. non-NULL), and upon successful completion

of this function will contain the current encryption mode for the Bluetooth device/link

requested. If the second parameter is NOT the local device address, then this function will

query the encryption mode on the current link level for the specified Bluetooth link

(device must be connected). A physical ACL link MUST already exist for this to work

(remote device address specified).

Prototype:

int BTPSAPI GAP_Query_Encryption_Mode(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Encryption_Mode_t *GAP_Encryption_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to which the encryption

is to be retreived.

GAP_Encryption_Mode Pointer to a buffer to receive the current encryption mode

setting.

Return:

Zero (0) if the encryption mode request was successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 523 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Authenticate_Remote_Device

This function is provided to allow a means to authenticate a remote device. This function

accepts as input the Bluetooth protocol stack ID of the local Bluetooth device, the

Bluetooth device address of the remote device to authenticate, and the GAP event callback

(and callback parameter) information that is to be used during the authentication process

to inform the caller of GAP authentication events and/or requests. Note that even if this

function returns success, it does NOT mean that the specified remote device was

successfully authenticated, it only that the authentication process has been started.

Because this function is asynchronous in nature, this function will notify the caller of the

result via the specified callback. The caller is free to cancel the authentication process at

any time by calling the GAP_Cancel_Authenticate_Remote_Device function and

specifying the Bluetooth device address of the Bluetooth device that was specified in this

call. It should be noted that when the callback is cancelled, only the callback is cancelled

(i.e. the GAP module still processes the authentication events only this callback will not

be used during the remainder of the process).

Prototype:

int BTPSAPI GAP_Authenticate_Remote_Device(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device to authenticate.

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the callback.

Return:

Zero (0) if the authentication process was successfully started.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_NO_CALLBACK_REGISTERED

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etAuthentication

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 524 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Cancel_Authenticate_Remote_Device

This function is provided to allow a means to cancel a current authentication process of a

specified remote device. This function accepts as input the Bluetooth protocol stack ID of

the local Bluetooth device and the Bluetooth device address of the remote device to cancel

to the authentication process of.

Prototype:

int BTPSAPI GAP_Authenticate_Remote_Device(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device on which to cancel the

authentication.

Return:

Zero (0) if the cancellation request was successfully processed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_NO_CALLBACK_REGISTERED

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Register_Remote_Authentication

This function is provided to allow a means to register a GAP event callback to accept

remote authentication requests. This function accepts as input the GAP event callback

information to register. It should be noted that ONLY ONE remote authentication

callback can be installed per Bluetooth device. The caller can un-register the remote

authentication callback that was registered with this function (if successful) by calling the

GAP_Un_Register_Remote_Authentication function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 525 of 737 January 10, 2014

Note:

A remote authentication event is defined as an authentication event that was not requested

by the local device (i.e. a pairing or authentication request issued from a remote device to

the local device).

Prototype:

int BTPSAPI GAP_Register_Remote_Authentication(unsigned int BluetoothStackID,

GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the remote authentication callback was successfully registered.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etAuthentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Un_Register_Remote_Authentication

This function is provided to allow a mechanism to un-register a previously registered GAP

event callback for remote authentication events. This function accepts as input the

Bluetooth stack ID of the Bluetooth device that the remote authentication callback was

registered previously (via a successful call to the GAP_Register_Remote_Authentication

function).

Prototype:

int BTPSAPI GAP_Un_Register_Remote_Authentication(unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 526 of 737 January 10, 2014

Return:

Zero (0) if the remote authentication callback was successfully un-registered.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Authentication_Response

This function is provided to allow a mechanism for the local device to respond to GAP

authentication events. This function is used to specify the authentication information for

the specified Bluetooth device. This function accepts as input, the Bluetooth protocol

stack ID of the Bluetooth device that has requested the authentication action, and the

authentication response information (specified by the caller).

Note:

This function should be called to respond to authentication requests that were received via

any of the installed callbacks:

 Bonding callback

 Authentication callback

 Remote authentication callback

Prototype:

int BTPSAPI GAP_Authentication_Response(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR,

GAP_Authentication_Information_t *GAP_Authentication_Information);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device that is being

authenticated.

GAP_Authentication_Information Pointer to a structure that holds authentication

information.

Return:

Zero (0) if the remote authentication response was successfully submitted.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 527 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etAuthentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Perform_Inquiry

This function is provided to allow a mechanism of starting an Inquiry scan procedure.

The first parameter to this function is the Bluetooth protocol stack ID of the Bluetooth

device that is to perform the inquiry. The second parameter is the type of inquiry to

perform. The third and fourth parameters are the minimum and maximum period lengths

(only valid in case a periodic inquiry scan is requested). The fifth parameter is the length

of time to perform the inquiry procedure. The sixth parameter is the maximum number of

responses to wait for. The final two parameters represent the callback function (and

callback parameter) that is to be called when the specified inquiry has completed as well

as when the individual inquiry results are found. This function returns zero if successful,

or a negative return error code if an Inquiry was unable to be performed. Only a single

inquiry scan can be performed at any given time. Calling this function while an

outstanding inquiry scan is in progress will fail. The caller can call the

GAP_Cancel_Inquiry function to cancel a currently executing inquiry procedure. The

minimum and maximum inquiry parameters are optional and if specified represent the

minimum and maximum periodic inquiry periods. The caller should set BOTH of these

values to zero if a simple inquiry scan procedure is to be used (non-periodic). If these two

parameters are specified, then these two parameters must satisfy the following formula:

MaximumPeriodLength > MinimumPeriodLength > InquiryLengthAll

Note:

All time values are specified in seconds.

The actual type of inquiry result that is returned in the specified callback depends on the

current inquiry mode. The inquiry mode can be set with the GAP_Set_Inquiry_Mode

function. The default inquiry mode is standard which returns the inquiry result via the

etInquiry_Entry_Result event.

Prototype:

int BTPSAPI GAP_Perform_Inquiry(unsigned int BluetoothStackID,

GAP_Inquiry_Type_t GAP_Inquiry_Type, unsigned int MinimumPeriodLength, unsigned

int MaximumPeriodLength, unsigned int InquiryLength,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 528 of 737 January 10, 2014

unsigned int MaximumResponses, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Inquiry_Type Type of inquiry scan to Perform. The currently defined values

are:

itGeneralInquiry

itLimitedInquiry

MinimumPeriodLength Mininum length of time to perform the inquiry procedure (in

seconds). This parameter is only applicable if a periodic inquiry

scan is required. This value must be in the following range:

MINIMUM_MINIMUM_INQUIRY_PERIOD_LENGTH

MAXIMUM_MINIMUM_INQUIRY_PERIOD_LENGTH

MaximumPeriodLength Maxinum length of time to perform the inquiry procedure (in

seconds). This parameter is only applicable if a periodic inquiry

scan is required. This value must be in the following range (and

satisfy the equation listed above:

MINIMUM_MAXIMUM_INQUIRY_PERIOD_LENGTH

MAXIMUM_MAXIMUM_INQUIRY_PERIOD_LENGTH

InquiryLength Length of time to perform the inquiry procedure (in seconds).

This value must be in the following range:

MINIMUM_INQUIRY_LENGTH

MAXIMUM_INQUIRY_LENGTH

MaximumResponses Maximum number of responses to be received before the

process is terminated. This value must be either:

INFINITE_NUMBER_INQUIRY_RESPONSES

or within the following range:

MINIMUM_NUMBER_INQUIRY_RESPONSES

MAXIMUM_NUMBER_INQUIRY_RESPONSES

GAP_Event_Callback Pointer to a callback function that is used by the GAP layer to

dispatch result information about the inquiry process.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the inquiry procedure was successfully started.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_DEVICE_HCI_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 529 of 737 January 10, 2014

BTPS_ERROR_INVALID_MODE

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

etInquiry_Entry_Result

etInquiry_With_RSSI_Entry_Result

etExtended_Inquiry_Entry_Result

etInquiry_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Cancel_Inquiry

This function is provided to allow a means of cancelling a currently active inquiry scan

process that was started via a successful call to the GAP_Perform_Inquiry function. This

function accepts as input the Bluetooth protocol stack that is associated with the Bluetooth

device that is currently performing an inquiry scan procedure. This function returns zero

if the inquiry process was able to be cancelled, or a negative return error code if there was

an error. If this function returns success then the GAP event callback that was installed

with the GAP_Perform_Inquiry function will NEVER be called (for the currently inquiry

procedure).

Prototype:

int BTPSAPI GAP_Cancel_Inquiry(unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Return:

Zero (0) if the inquiry process was successfully halted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 530 of 737 January 10, 2014

GAP_Set_Inquiry_Mode

The following function is provided to set the inquiry mode of the local Bluetooth device

specified by the Bluetooth protocol stack that is specified by the Bluetooth protocol stack

ID. The second parameter specifies the inquiry mode to place the local Bluetooth device

into. This function returns zero if the inquiry mode was able to be successfully changed,

otherwise this function returns a negative value which signifies an error condition.

Note:

The inquiry mode dictates how the local device will actually perform inquiries (and more

importantly, how the results will be returned). The following table shows supported

modes and the corresponding GAP inquiry result event for that mode. The following table

shows the GAP inquiry result type that will be returned for each inquiry mode:

Inquiry Mode GAP Inquiry Result Event Type

imStandard etInquiry_Entry_Result

imRSSI etInquiry_With_RSSI_Entry_Result

imExtended etExtended_Inquiry_Entry_Result

Prototype:

int BTPSAPI GAP_Set_Inquiry_Mode(unsigned int BluetoothStackID,

GAP_Inquiry_Mode_t GAP_Inquiry_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Inquiry_Mode Specifies the inquiry mode to use. Possible values:

imStandard

imRSSI

imExtended

Return:

Zero (0) if the inquiry mode was successfully set.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 531 of 737 January 10, 2014

GAP_Query_Inquiry_Mode

The following function is provided to allow a means to query the current inquiry mode

being used by the Bluetooth device that is specified by the Bluetooth protocol stack that is

associated with the specified Bluetooth stack ID. The second parameter to this function is

a pointer to a variable that will receive the current inquiry mode of the local Bluetooth

device. The second parameter must be valid (i.e. non-NULL) and upon successful

completion of this function will contain the current inquiry mode of the local Bluetooth

device. This function will return zero on success, or a negative return error code if there

was an error. If this function returns success, then the GAP inquiry mode will contain the

current inquiry mode value.

Note:

The inquiry mode dictates how the local device will actually perform inquiries (and more

importantly, how the results will be returned). The following table shows supported

modes and the corresponding GAP inquiry result event for that mode. The following table

shows the GAP inquiry result type that will be returned for each inquiry mode:

Inquiry Mode GAP Inquiry Result Event Type

imStandard etInquiry_Entry_Result

imRSSI etInquiry_With_RSSI_Entry_Result

imExtended etExtended_Inquiry_Entry_Result

Prototype:

int BTPSAPI GAP_Query_Inquiry_Mode(unsigned int BluetoothStackID,

GAP_Inquiry_Mode_t *GAP_Inquiry_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_Inquiry_Mode Pointer to a buffer to receive the current inquiry mode setting.

Return:

Zero (0) if the current inquiry mode was successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 532 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Remote_Device_Name

This function is provided to allow a mechanism to query the user-friendly Bluetooth

device name of the specified remote Bluetooth device. This function accepts as input the

Bluetooth device address of the remote Bluetooth device to query the name of and the

GAP event callback information that is to be used when the remote device name process

has completed. This function returns zero if successful, or a negative return error code if

the remote name request was unable to be submitted. If this function returns success, then

the caller will be notified via the specified callback when the remote name information has

been determined (or there was an error). This function cannot be used to determine the

user-friendly name of the local Bluetooth device. The GAP_Query_Local_Name function

should be used to query the user-friendly name of the local Bluetooth device. Because

this function is asynchronous in nature (specifying a remote device address), this function

will notify the caller of the result via the specified callback. The caller is free to cancel the

remote name request at any time by issuing the GAP_Cancel_Query_Remote_Name

function and specifying the Bluetooth device address of the Bluetooth device that was

specified in the original call to this function. It should be noted that when the callback is

cancelled, the operation is attempted to be cancelled and the callback is cancelled (i.e. the

GAP module still might perform the remote name request, but no callback is ever issued).

Prototype:

int BTPSAPI GAP_Query_Remote_Device_Name(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which the name is to be

retrieved.

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CALLBACK_INFORMATION

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 533 of 737 January 10, 2014

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etRemote_Name_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Cancel_Query_Remote_Device_Name

This function is provided to cancel the future dispatching of a GAP remote name result

event callback that was installed via a successful call to the

GAP_Query_Remote_Device_Name function. This function attempts to cancel the

querying of the remote device's name and it will ALWAYS cancel the installed callback

notification. This function accepts as input the device address of the Bluetooth device that

the previous call to GAP_Query_Remote_Device_Name was issued with. The

BD_ADDR parameter MUST be valid, and cannot be the device address of the local

Bluetooth device because the local device name query does not use the callback

mechanism (nor this function).

Prototype:

int BTPSAPI GAP_Cancel_Query_Remote_Device_Name(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which the remote name is

being retrieved (which should be cancelled).

Return:

Zero (0) if the remote device name query was successfully cancelled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_CALLBACK_INFORMATION

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 534 of 737 January 10, 2014

GAP_Query_Remote_Features

This function is provided to allow a mechanism to query the LMP features of the specified

remote Bluetooth device. This function accepts as input the Bluetooth device address of

the remote Bluetooth device to query the LMP features of and the GAP event callback

information that is to be used when the query LMP features process has completed. This

function returns zero if successful, or a negative return error code if the query LMP

features request was unable to be submitted. If this function returns success, then the

caller will be notified via the specified callback when the remote LMP features

information has been determined (or there was an error). This function cannot be used to

determine the LMP features of the local Bluetooth device. Because this function is

asynchronous in nature (specifying a remote device address), this function will notify the

caller of the result via the specified callback.

Prototype:

int BTPSAPI GAP_Query_Remote_Features(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the remote device

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the remote LMP feature request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etRemote_Features_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 535 of 737 January 10, 2014

GAP_Query_Remote_Version_Information

The following function is provided to allow a mechanism to Query the Version

information of the specified Bluetooth device. This function accepts as input the

Bluetooth Protocol Stack ID of the Bluetooth device that is to issue the Version Request,

the Remote Bluetooth device address that references the Remote Bluetooth device, and the

GAP Event Callback Information that is to be used when the Remote Version Information

has been determined. This function returns zero if successful, or a negative return error

code if the Remote Version Request was unable to be submitted. If this function returns

success, then the caller will be notified via the specified callback when the requested

information has been determined (or if there was an error). NOTE: Because this function

is asynchronous in nature , this function will notify the caller of the result via the installed

Callback.

This function is provided to allow a mechanism to query the version information of the

specified remote Bluetooth device. This function accepts as input the Bluetooth device

address of the remote Bluetooth device to query the version information of and the GAP

event callback information that is to be used when the query version process has

completed. This function returns zero if successful, or a negative return error code if the

query version request was unable to be submitted. If this function returns success, then

the caller will be notified via the specified callback when the remote version information

has been determined (or there was an error). This function cannot be used to determine

the version information of the local Bluetooth device. Because this function is

asynchronous in nature (specifying a remote device address), this function will notify the

caller of the result via the specified callback.

Prototype:

int BTPSAPI GAP_Query_Remote_Version_Information(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the remote device

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the remote version information request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 536 of 737 January 10, 2014

Possible Events:

etRemote_Version_Information_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Initiate_Bonding

This function is provided to allow a means to Initiate a Bonding Procedure. This function

can perform both General and Dedicated Bonding based upon the type of Bonding

requested. This function accepts as input, the Bluetooth Protocol Stack ID of the Local

Bluetooth device that is perform the Bonding, the Remote Bluetooth address of the Device

to Bond with, the type of bonding to perform, and the GAP Event Callback Information

that will be used to handle Authentication Events that will follow if this function is

successful. If this function is successful, then all further information will be returned

through the Registered GAP Event Callback. It should be noted that if this function

returns success that it does NOT mean that the Remote Device has successfully Bonded

with the Local Device, ONLY that the Remote Device Bonding Process has been started.

This function will only succeed if a Physical Connection to the specified Remote

Bluetooth device does NOT already exist. This function will connect to the Bluetooth

device and begin the Bonding Process. If General Bonding is specified, then the Link is

maintained, and will NOT be terminated until the GAP_End_Bonding function has been

called. This will allow any higher level initialization that is needed on the same physical

link. If Dedicated Bonding is performed, then the Link is terminated automatically when

the Authentication Process has completed.Due to the asynchronous nature of this process,

the GAP Event Callback that is specified will inform the caller of any Events and/or Data

that is part of the Authentication Process. The GAP_Cancel_Bonding function can be

called at any time to end the Bonding Process and terminate the link (regardless of which

Bonding method is being performed).When using General Bonding, if an L2CAP

Connection is established over the Bluetooth Link that was initiated with this function, the

Bluetooth Protocol Stack MAY or MAY NOT terminate the Physical Link when (and if)

an L2CAP Disconnect Request (or Response) is issued. If this occurs, then calling the

GAP_End_Bonding function will have no effect (the GAP_End_Bonding function will

return an error code in this case).

Prototype:

int BTPSAPI GAP_Initiate_Bonding(unsigned int BluetoothStackID, BD_ADDR_t

BD_ADDR, GAP_Bonding_Type_t GAP_Bonding_Type,

GAP_Event_Callback_t GAP_Event_Callback, unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which to Bond.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 537 of 737 January 10, 2014

GAP_Bonding_Type Type of Bonbding to perform. Currently the following are

defined:

btGeneral

btDedicated

btDedicated_ManualDisconnect

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP Event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for all callbacks.

Return:

Zero (0) if the Request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_ADDING_CALLBACK_INFORMATION

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

etAuthentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Cancel_Bonding

This function is provided to allow a means to cancel a bonding process that was started

previously via a successful call to the GAP_Initiate_Bonding function (either dedicated or

general). This function accepts the Bluetooth device address of the remote Bluetooth

device that the bonding procedure was initiated with. This function terminates the ACL

connection and guaranteed that NO further GAP Event Callbacks will be issued after this

function has completed (if successful).

Prototype:

int BTPSAPI GAP_Cancel_Bonding(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which to cancel Bonding.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 538 of 737 January 10, 2014

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DELETING_CALLBACK_INFORMATION

BTPS_ERROR_INVALID_MODE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_End_Bonding

The following function is provided to allow a means to terminate a connection that was

established via a call to the GAP_Initiate_Bonding function (that specified general

bonding as the bonding type to perform). This function has NO effect if the bonding

procedure was initiated using dedicated bonding (or the device is already disconnected).

This function accepts the Bluetooth device address of the remote Bluetooth device that

was specified to be bonded with (general bonding). This function terminates the ACL

connection that was established and it guarantees that NO GAP Event Callbacks will be

issued to the GAP Event Callback that was specified in the original

GAP_Initiate_Bonding function call (if this function returns success).

Prototype:

int BTPSAPI GAP_End_Bonding(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which to end bonding.

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_MODE

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 539 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Local_BD_ADDR

This function is responsible for querying (and reporting) the device address of the local

Bluetooth device. The second parameter is a pointer to a buffer that is to receive the

device address of the local Bluetooth device. If this function is successful, the buffer that

the BD_ADDR parameter points to will be filled with the device address read from the

local Bluetooth device. If this function returns a negative value, then the device address of

the local Bluetooth device was NOT able to be queried (error condition).

Prototype:

int BTPSAPI GAP_Query_Local_BD_ADDR(unsigned int BluetoothStackID,

BD_ADDR_t *BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Pointer to memory in which to receive the local device address.

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Set_Class_Of_Device

This function is provided to allow the changing of the class of device of the local

Bluetooth device. The Class_of_Device parameter represents the class of device value

that is to be written to the local Bluetooth device. This function will return zero if the

class of device was successfully changed, or a negative return error code if there was an

error condition.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 540 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_Set_Class_Of_Device(unsigned int BluetoothStackID,

Class_of_Device_t Class_of_Device);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Class_of_Device Structure that holds the class of device information.

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Class_Of_Device

This function is responsible for querying (and reporting) the class of device of the local

Bluetooth device. The second parameter is a pointer to a class of device buffer that is to

receive the Bluetooth class of device of the local device. If this function is successful, this

function returns zero, and the buffer that Class_Of_Device points to will be filled with the

Class of Device read from the local Bluetooth device. If there is an error, this function

returns a negative value, and the class of device of the local Bluetooth device is NOT

copied into the specified input buffer.

Prototype:

int BTPSAPI GAP_Query_Class_Of_Device(unsigned int BluetoothStackID,

Class_of_Device_t *Class_of_Device);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Class_of_Device Pointer to a structure to receive the class of device information.

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 541 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Set_Local_Device_Name

This function is provided to allow the changing of the device name of the local Bluetooth

device. The Name parameter must be a pointer to a NULL terminated ASCII string of at

most MAX_NAME_LENGTH (not counting the trailing NULL terminator). This

function will return zero if the local device name was successfully changed, or a negative

return error code if there was an error condition.

Note:

The format of the local device name is a NULL terminated UTF-8 string.

Prototype:

int BTPSAPI GAP_Set_Local_Device_Name(unsigned int BluetoothStackID, char *Name);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Name Pointer to a buffer to containing the local device name.

Return:

Zero (0) if the Request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 542 of 737 January 10, 2014

GAP_Query_Local_Device_Name

This function is responsible for querying (and reporting) the user friendly name of the

local Bluetooth device. The final parameters to this function specify the buffer and buffer

length of the buffer that is to receive the local device name. The NameBufferLength

parameter should be at least (MAX_NAME_LENGTH+1) to hold the maximum

allowable device name (plus a single character to hold the NULL terminator). If this

function is successful, this function returns zero, and the buffer that NameBuffer points to

will be filled with a NULL terminated ASCII representation of the local device name. If

this function returns a negative value, then the local device name was NOT able to be

queried (error condition).

Note:

The format of the local device name is a NULL terminated UTF-8 string.

Prototype:

int BTPSAPI GAP_Query_Local_Device_Name(unsigned int BluetoothStackID,

unsigned int NameBufferLength, char *NameBuffer);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

NameBufferLength Size of vuffer to receive local device name.

NameBuffer Pointer to a buffer to receive the local device name.

Return:

Zero (0) if the request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Disconnect_Link

The following function is provided to allow a means to terminate an existing connection

(ACL) that was established by any BR/EDR Bluetooth protocol stack mechanism. This

function accepts the Bluetooth device address of the remote Bluetooth device to

disconnect. This function terminates any ACL connection that was established. If this

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 543 of 737 January 10, 2014

function is successful, then the caller can expect each layer of the Bluetooth protocol stack

that was dependent upon the specified connection to clean up correctly and dispatch all

necessary disconnection callbacks.

Note:

This function will only disconnect BR/EDR connections. It will not disconnect Bluetooth

LE connections.

Prototype:

int BTPSAPI GAP_Disconnect_Link(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which to terminate the link.

Return:

Zero (0) if the Request was successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

GAP_Query_Connection_Handle

The following function is provided to allow a means to query the ACL connection handle

of a connection to a remote Bluetooth device. If a connection exists to the remote device

specified, the ACL connection handle is returned in the buffer passed to this function.

This function will return zero on success, or a negative return error code if there was an

error. If this function returns success, then the Connection_Handle variable will contain

the current ACL connection handle for the connection to the specified Bluetooth device

address.

Note:

This function is only for BR/EDR connections. This function will NOT return connection

handles for Bluetooth LE connections.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 544 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_Query_Connection_Handle(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t *Connection_Handle);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth device of which to query the

connection handle.

Connection_Handle Pointer to a variable that will receive the connection handle

associated with the specified Bluetooth device address.

Return:

Zero (0) if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_NOT_CONNECTED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Query_Local_Out_Of_Band_Data

The following function is provided for Local devices that support Out of Band (OOB)

pairing using a technology such as near field communications (NFC). It is used to obtain

the simple pairing hash (C) and the simple pairing randomizer (R) which are intended to

be transferred to a remote device using OOB.

Note:

A new value for C and R are created each time this call is made. Each OOB transfer will

have unique C and R values so that after each OOB transfer this function should be called

to obtain a new set for the next OOB transfer.

These values are not kept on device reset or device power off in which case a call to this

function should be invoked during one time initialization.

Prototype:

int BTPSAPI GAP_Query_Local_Out_Of_Band_Data(unsigned int BluetoothStackID,

GAP_Out_Of_Band_Data_t *OutOfBandData);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 545 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

OutOfBandData Pointer to a buffer that is to receive the Out Of Band Data that

the local device has generated.

Return:

Zero (0) if the OOB data was successfully retreived.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Refresh_Encryption_Key

The following function is provided to allow the host to cause the Controller to refresh the

encryption by pausing the current encryption and then resuming the encryption.

Note:

This function is asynchronous in nature and will notify the caller of the completion of a

refresh via the specified callback. This operation cannot be cancelled (other than a

disconnect occurring).

Prototype:

int BTPSAPI GAP_Refresh_Encryption_Key(unsigned int BluetoothStackID, BD_ADDR_t

BD_ADDR, GAP_Event_Callback_t GAP_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the remote device

GAP_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP Event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for all callbacks.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 546 of 737 January 10, 2014

Return:

Zero (0) if the Refresh encryption process was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Read_Extended_Inquiry_Information

The following function is provided to allow the local host to read the Extended Inquiry

Response Information currently stored in the controller. This is the data that the controller

will return when it returns an extended inquiry response to a remote device. This function

will return zero if successful, or a negative return error code if there was an error

condition. If this function returns success, then the Extended_Inquiry_Response_Data

member will be filled in with the correct data.

Note:

The GAP_Parse_Extended_Inquiry_Response_Data() function can be used to parse the

Extended Inquiry Response Data for easy parsing (if required).

Prototype:

int BTPSAPI GAP_Read_Extended_Inquiry_Information(unsigned int BluetoothStackID,

Byte_t *FEC_Required,

Extended_Inquiry_Response_Data_t *Extended_Inquiry_Response_Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize.

FEC_Required Specifies whether FEC is required or not.

Extended_Inquiry_Response_Data Buffer that is to receive the actual Extended Inquiry

Response Data that the local Bluetooth device is

currently using. This buffer must be at least 240 bytes in

length.

Return:

Zero (0) if the Extended Inquiry Response data was successfully read. The

Extended_Inquiry_Response_Data buffer will be populated with the Extended Inquiry

Response data.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 547 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_Write_Extended_Inquiry_Information

The following function is provided to allow the local host to write the extended inquiry

information to be stored in the controller. This is the data that the controller will return

when it returns an extended inquiry response to a remote device. This function will return

zero if successful, or a negative return error code if there was an error condition.

Prototype:

int BTPSAPI GAP_Write_Extended_Inquiry_Information(

unsigned int BluetoothStackID, Byte_t FEC_Required,

Extended_Inquiry_Response_Data_t *Extended_Inquiry_Response_Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize.

FEC_Required Specifies whether FEC is required or not.

Extended_Inquiry_Response_Data Buffer that contains the actual Extended Inquiry

Response Data that the local Bluetooth device is to begin

using. This buffer must be at least 240 bytes in length.

Return:

Zero (0) if the Extended Inquiry Response data was successfully written.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_HCI_ERROR

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 548 of 737 January 10, 2014

GAP_Convert_Extended_Inquiry_Response_Data

The following function is provided to allow a simple mechanism to convert a

GAP_Extended_Inquiry_Response_Data_t to the raw

Extended_Inquiry_Response_Data_t. This second parameter *MUST* point to the

maximum sized Extended Inquiry Response Buffer size

(EXTENDED_INQUIRY_RESPONSE_DATA_SIZE). This function will return the

number of successfully converted items (zero or more), or a negative error code if there

was an error.

Note:

This function will populate the entire Extended_Inquiry_Response_Data_t buffer (all

EXTENDED_INQUIRY_RESPONSE_DATA_SIZE bytes). If the specified information

is smaller than the full Extended Inquiry Response Data size, the resulting buffer will be

padded with zeros.

Prototype:

int BTPSAPI GAP_Convert_Extended_Inquiry_Response_Data(

GAP_Extended_Inquiry_Response_Data_t *GAP_Extended_Inquiry_Response_Data,

Extended_Inquiry_Response_Data_t *Extended_Inquiry_Response_Data);

Parameters:

GAP_Extended_Inquiry_Response_Data Pointer to the Parsed Extended Inquiry data that is

to be converted.

Extended_Inquiry_Response_Data Buffer that is to receive the actual Extended

Inquiry Response Data from the parsed Extended

Inquiry Data. This buffer must be at least 240

bytes in length.

Return:

Non-negative if successful. This value represents the number of valid Extended Inquiry

Response data fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_Parse_Extended_Inquiry_Response_Data

The following function is a utility function that exists to parse the specified

Extended_Inquiry_Response_Data_t information into

GAP_Extended_Inquiry_Response_Data_t structure (for ease of parsing). This function

accepts as the first parameter the Extended_Inquiry_Response_Data_t to parse, followed

by a pointer to a GAP_Extended_Inquiry_Response_Data_t that will receive the Parsed

data. The final parameter, if specified, *MUST* specify the maximum number of entries

that can be parsed, as well as the actual Entry array to parse the entries into (on input).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 549 of 737 January 10, 2014

Note:

If this function is called with a NULL passed as the final parameter, then, this function

will simply calculate the number of Extended Inquiry Data Information Entries that will

be required to hold the parsed information. If the final parameter is NOT NULL then it

MUST contain the maximum number of entries that can be supported (specified via the

Number_Data_Entries member) and the Data_Entries member must point to memory that

contains (at least) that many members).

This function will return BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE if there was

not enough Data Entries specified (via the Number_Data_Entries member) to satisfy the

parsing of the actual Extended Inquiry Response Data.

Prototype:

int BTPSAPI GAP_Parse_Extended_Inquiry_Response_Data(

Extended_Inquiry_Response_Data_t *Extended_Inquiry_Response_Data,

GAP_Extended_Inquiry_Response_Data_t *GAP_Extended_Inquiry_Response_Data);

Parameters:

Extended_Inquiry_Response_Data Buffer that contains the actual Extended Inquiry

Response Data that is to be parsed. This buffer

must be at least 240 bytes in length.

GAP_Extended_Inquiry_Response_Data Pointer to the Parsed Extended Inquiry data that

has been parsed.

Return:

Non-negative if successful. This value represents the number of valid Extended Inquiry

Response data fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_LE_Create_Connection

The following function is provided to allow the local host the ability to create a connection

to a remote device using the Bluetooth LE radio. The connection process is asynchronous

in nature and the caller will be notified via the GAP LE event callback function (specified

in this function) when the connection completes. This function will return zero if

successful, or a negative return error code if there was an error condition.

Note:

The Bluetooth LE connection process is not like a Bluetooth BR/EDR connection. Once a

connection request is submitted (via this function), it will stay active and will not time out.

The connection process is over when either the connection is made OR the caller calls the

GAP_LE_Cancel_Create_Connection() function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 550 of 737 January 10, 2014

This function allows the use of the Bluetooth white-list and can be used to specify a

specific set of devices to connect to.

Prototype:

int BTPSAPI GAP_LE_Create_Connection(unsigned int BluetoothStackID,

unsigned int ScanInterval, unsigned int ScanWindow,

GAP_LE_Filter_Policy_t InitatorFilterPolicy,

GAP_LE_Address_Type_t RemoteAddressType, BD_ADDR_t *RemoteDevice,

GAP_LE_Address_Type_t LocalAddressType,

GAP_LE_Connection_Parameters_t *ConnectionParameters, GAP_LE_Event_Callback_t

GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

ScanInterval Scan interval to use when scanning for the device(s) to connect.

This value is specified in milli-seconds. This value must be

within the range:

MINIMUM_LE_SCAN_INTERVAL

MAXIMUM_LE_SCAN_INTERVAL

ScanWindow Scan window to use when scanning for the device(s) to connect.

This value is specified in milli-seconds. This value must be

within the range:

MINIMUM_LE_SCAN_WINDOW

MINIMUM_LE_SCAN_WINDOW

InitatorFilterPolicy Filter policy to apply when scanning. Valid values are:

fpNoFilter

fpWhiteList

If the white-list filter is specified then the remote device address

(and address type) are ignored.

RemoteAddressType Specifies the type of the remote device address to connect with

(if not using white-list filter). Valid values are:

latPublic

latRandom

RemoteDevice Specifies the remote device address to connect with. This value

is required if no filter is specified as the filter policy.

LocalAddressType Specifies the type of the address the local device is to use when

connecting to the remote device. Valid values are:

latPublic

latRandom

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 551 of 737 January 10, 2014

ConnectionParameters Specifies the parameters to use when actually establishing the

connection to the remote device. This structure is defined as

follows:
typedef struct

{

 Word_t Connection_Interval_Min;

 Word_t Connection_Interval_Max;

 Word_t Slave_Latency;

 Word_t Supervision_Timeout;

 Word_t Minimum_Connection_Length;

 Word_t Maximum_Connection_Length;

} GAP_LE_Connection_Parameters_t;

Note that ALL parameters are specified in milli-seconds

except the Slave_Latency parameter which is specified in

connection events.

where, Connection_Interval_Min is specified in milli-

seconds and must be between:

MINIMUM_MINIMUM_CONNECTION_INTERVAL

MAXIMUM_MINIMUM_CONNECTION_INTERVAL

Note the default minimum connection interval is defined by

the constant:

DEFAULT_MINIMUM_CONNECTION_INTERVAL

and, Connection_Interval_Max is specified in milli-seconds

and must be between:

MINIMUM_MAXIMUM_CONNECTION_INTERVAL

MAXIMUM_MAXIMUM_CONNECTION_INTERVAL

Note the default maximum connection interval is defined by

the constant:

DEFAULT_MAXIMUM_CONNECTION_INTERVAL

and, Slave_Latency is specified in number of connection

events and must be between:

MINIMUM_SLAVE_LATENCY

MAXIMUM_SLAVE_LATENCY

Note the default slave latency is defined by the constant:

DEFAULT_SLAVE_LATENCY

and, Supervision_Timeout is specified in milli-seconds and

must be between:

MINIMUM_LINK_SUPERVISION_TIMEOUT

MAXIMUM_LINK_SUPERVISION_TIMEOUT

Note the default link supervision timeout is defined by the

constant:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 552 of 737 January 10, 2014

DEFAULT_LINK_SUPERVISION_TIMEOUT

and, the Minimum_Connection_Length and

Maximum_Connection_Length parameters are specified in

milli-seconds and represent the expected minimum and

maximum connection events for the connection. These

values must be between:

MINIMUM_CONNECTION_EVENT_LENGTH

MAXIMUM_CONNECTION_EVENT_LENGTH

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE Event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the callback.

Return:

Zero (0) if the connection request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_CONNECTION_PARAMETERS

BTPS_ERROR_RANDOM_ADDRESS_IN_USE

BTPS_ERROR_CREATE_CONNECTION_OUTSTANDING

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Connection_Complete

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Cancel_Create_Connection

The following function is provided to allow the local host the ability to cancel (end) a

connection process. This function does not disconnect a connected device, it merely stops

the connection process (scanning and connecting). This function will return zero if

successful, or a negative return error code if there was an error condition.

Note:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 553 of 737 January 10, 2014

The Bluetooth LE connection process is not like a Bluetooth BR/EDR connection. Once a

connection request is submitted (via the GAP_LE_Create_Connection function), it will

stay active and will not time out. The connection process is over when either the

connection is made OR the caller calls this function.

Prototype:

int BTPSAPI GAP_LE_Cancel_Create_Connection(unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Return:

Zero (0) if the connection process was successfully cancelled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Disconnect

The following function is provided to allow the local host the ability to disconnect a

currently connected LE device. This function will return zero if successful, or a negative

return error code if there was an error condition.

Prototype:

int BTPSAPI GAP_LE_Disconnect(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Specifies the remote device address of the currently connected

device to disconnect.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 554 of 737 January 10, 2014

Return:

Zero (0) if the disconnection request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Disconnection_Complete

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

GAP_LE_Read_Remote_Features

The following function is provided to allow the local host the ability to determine the

remote LMP features of a connected remote device. This function will return zero if

successful, or a negative return error code if there was an error condition.

Note:

This function will not create an LE ACL connection to the specified device. The LE ACL

connection to the specified remote device must already exist before calling this function.

Prototype:

int BTPSAPI GAP_LE_Read_Remote_Features(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Specifies the remote device address of the currently connected

device to query the remote LMP features.

Return:

Zero (0) if the read remote features request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 555 of 737 January 10, 2014

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Remote_Features_Result

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Perform_Scan

The following function is provided to allow the local host the ability to begin an LE

scanning procedure. This procedure is similar in concept to the inquiry procedure in

Bluetooth BR/EDR in that it can be used to discover devices that have been instructed to

advertise. This function will return zero if successful, or a negative return error code if

there was an error condition.

Note:

There can only be a single scan being performed at any given time. The caller must call

the GAP_LE_Cancel_Scan() function to stop a currently active scan process.

The scan interval and scan window parameters are specified in milli-seconds and MUST

satisfy the following equation:

Scan Window <= Scan Interval

Note that if the scan window equals the scan interval than continuous scanning is

specified.

Prototype:

int BTPSAPI GAP_LE_Perform_Scan(unsigned int BluetoothStackID,

GAP_LE_Scan_Type_t ScanType, unsigned int ScanInterval,

unsigned int ScanWindow, GAP_LE_Address_Type_t LocalAddressType,

GAP_LE_Filter_Policy_t FilterPolicy, Boolean_t FilterDuplicates,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

ScanType Specifies the type of scan to perform. This value must be one of

the following:

stPassive

stActive

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 556 of 737 January 10, 2014

ScanInterval Specifies interval to use while scanning. This value must be be

between (and satisfy the equation listed above):

MINIMUM_LE_SCAN_INTERVAL

MAXIMUM_LE_SCAN_INTERVAL

ScanWindow Specifies window to use while scanning. This value must be be

between (and satisfy the equation listed above):

MINIMUM_LE_SCAN_WINDOW

MAXIMUM_LE_SCAN_WINDOW

LocalAddressType Specifies the type of the address the local device is to use when

scanning. Valid values are:

latPublic

latRandom

FilterPolicy Filter policy to apply when scanning. Valid values are:

fpNoFilter

fpWhiteList

FilterDuplicates Specifies whether or not the host controller is to filter duplicate

scan responses.

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE Event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the callback.

Return:

Zero (0) if the scan procedure was successfully started.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_SCAN_ACTIVE

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Advertising_Report

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 557 of 737 January 10, 2014

GAP_LE_Cancel_Scan

The following function is provided to allow the local host the ability to cancel (stop) an

on-going scan procedure. This function will return zero if successful, or a negative return

error code if there was an error condition.

Prototype:

int BTPSAPI GAP_LE_Cancel_Scan(unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Return:

Zero (0) if the scan procedure was successfully cancelled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Set_Advertising_Data

The following function is provided to allow the local host the ability to set the advertising

data that is used during the advertising procedure (started via the

GAP_LE_Advertising_Enable function). This function will return zero if successful, or a

negative return error code if there was an error condition.

Note:

Advertising data consists of zero or more tuples that consist of:

 Type (byte)

 Length (byte)

 Data (zero or more bytes)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 558 of 737 January 10, 2014

Also note that the advertising data itself is a fixed length. If the list of the tuples of the

advertising data is not long enough to fill the required advertising length then bytes

containing the binary value zero (0x00) should be used to pad the data (until the end of the

required advertising data size).

Prototype:

int BTPSAPI GAP_LE_Set_Advertising_Data(unsigned int BluetoothStackID,

unsigned int Length, Advertising_Data_t *Advertising_Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Length Number of significant advertising data bytes contained in the

advertising data.

Advertising_Data Pointer to a buffer that contains the advertising data. This

buffer must be at least:

ADVERTISING_DATA_MAXIMUM_SIZE

bytes long. Note that the length parameter specifies the actual

number of bytes that are valid. The remaining bytes should be

padded with zero’s.

Return:

Zero (0) if the advertising data was successfully set.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 559 of 737 January 10, 2014

GAP_LE_Convert_Advertising_Data

The following function is provided to allow a simple mechanism to convert a

GAP_LE_Advertising_Data_t to the raw Advertising_Data_t format (packed format).

This second parameter *MUST* point to the maximum sized advertising data buffer size

(ADVERTISING_DATA_SIZE). This function will return the number of successfully

converted items (zero or more), or a negative error code if there was an error.

Note:

This function will populate the entire Advertising_Data_t buffer (all

ADVERTISING_DATA_SIZE bytes). If the specified information is smaller than the full

advertising data size, the resulting buffer will be padded with binary zero bytes (0x00).

Prototype:

int BTPSAPI GAP_LE_Convert_Advertising_Data(

GAP_LE_Advertising_Data_t *GAP_LE_Advertising_Data,

Advertising_Data_t *Advertising_Data);

Parameters:

GAP_LE_Advertising_Data Pointer to the parsed advertising data that is to be converted.

Advertising_Data Buffer that is to receive the actual advertising data from the

parsed advertising data. This buffer must be at least:

ADVERTISING_DATA_SIZE

bytes in length.

Return:

Non-negative if successful. This value represents the number of valid advertising data

fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_LE_Parse_Advertising_Data

The following function is a utility function that exists to parse the specified

Advertising_Data_t information into GAP_LE_Advertising_Data_t structure (for ease of

parsing). This function accepts as the first parameter the Advertising_Data_t to parse,

followed by a pointer to a GAP_LE_Advertising_Data_t that will receive the parsed data.

The final parameter, if specified, *MUST* specify the maximum number of entries that

can be parsed, as well as the actual entry array to parse the entries into (on input).

Note:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 560 of 737 January 10, 2014

If this function is called with a NULL passed as the final parameter, then, this function

will simply calculate the number of advertising data entries that will be required to hold

the parsed information. If the final parameter is NOT NULL then it *MUST* contain the

maximum number of entries that can be supported (specified via the

Number_Data_Entries member) and the Data_Entries member must point to memory that

contains (at least) that many members).

This function will return BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE if there was

not enough data entries specified (via the Number_Data_Entries member) to satisfy the

parsing of the actual advertising data.

Prototype:

int BTPSAPI GAP_LE_Parse_Advertising_Data(Advertising_Data_t *Advertising_Data,

GAP_LE_Advertising_Data_t *GAP_LE_Advertising_Data);

Parameters:

Advertising_Data Buffer that contains the actual advertising data that is to be

parsed. This buffer must be at least:

ADVERTISING_DATA_SIZE

bytes long. Note that if the advertising occupies less data

bytes than the data should be padded with zero bytes (0x00).

GAP_LE_Advertising_Data Pointer to the parsed advertising data that has been parsed.

Note that if this parameter is not NULL then the

Number_Data_Entries member must contain the number of

data entries that the Data_Entries member points to (to receive

the parsed data information.

Return:

Non-negative if successful. This value represents the number of valid advertising data

fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_LE_Set_Scan_Response_Data

The following function is provided to allow the local host the ability to set the scan

response data that is used during the advertising procedure (started via the

GAP_LE_Advertising_Enable function). This function will return zero if successful, or a

negative return error code if there was an error condition.

Note:

Scan response data consists of zero or more tuples that consist of:

 Type (byte)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 561 of 737 January 10, 2014

 Length (byte)

 Data (zero or more bytes)

Also note that the scan response data itself is a fixed length. If the list of the tuples of the

response data is not long enough to fill the required response length then bytes containing

the binary value zero (0x00) should be used to pad the data (until the end of the required

response data size).

Prototype:

int BTPSAPI GAP_LE_Set_Scan_Response_Data(unsigned int BluetoothStackID,

unsigned int Length, Scan_Response_Data_t *Scan_Response_Data);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Length Number of significant advertising data bytes contained in the

advertising data.

Scan_Response_Data Pointer to a buffer that contains the response data. This buffer

must be at least:

SCAN_RESPONSE_DATA_MAXIMUM_SIZE

bytes long. Note that the length parameter specifies the actual

number of bytes that are valid. The remaining bytes should be

padded with zero’s.

Return:

Zero (0) if the scan response data was successfully set.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 562 of 737 January 10, 2014

GAP_LE_Convert_Scan_Response_Data

The following function is provided to allow a simple mechanism to convert a

GAP_LE_Advertising_Data_t to the raw Scan_Response_Data_t format (packed format).

This second parameter *MUST* point to the maximum sized scan response data buffer

size (SCAN_RESPONSE_DATA_SIZE). This function will return the number of

successfully converted items (zero or more), or a negative error code if there was an error.

Note:

This function will populate the entire Scan_Response_Data_t buffer (all

SCAN_RESPONSE_DATA_SIZE bytes). If the specified information is smaller than the

full scan response data size, the resulting buffer will be padded with binary zero bytes

(0x00).

Prototype:

int BTPSAPI GAP_LE_Convert_Scan_Response_Data(

GAP_LE_Advertising_Data_t *GAP_LE_Advertising_Data,

Scan_Response_Data_t *Scan_Response_Data);

Parameters:

GAP_LE_Advertising_Data Pointer to the parsed advertising data that is to be converted.

Scan_Response_Data Buffer that is to receive the actual scan response data from the

parsed advertising data. This buffer must be at least:

SCAN_RESPONSE_DATA_SIZE

bytes in length.

Return:

Non-negative if successful. This value represents the number of valid advertising data

fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_LE_Parse_Scan_Response_Data

The following function is a utility function that exists to parse the specified

Scan_Response_Data_t information into GAP_LE_Advertising_Data_t structure (for ease

of parsing). This function accepts as the first parameter the Scan_Response_Data_t to

parse, followed by a pointer to a GAP_LE_Advertising_Data_t that will receive the parsed

data. The final parameter, if specified, *MUST* specify the maximum number of entries

that can be parsed, as well as the actual entry array to parse the entries into (on input).

Note:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 563 of 737 January 10, 2014

If this function is called with a NULL passed as the final parameter, then, this function

will simply calculate the number of advertising data entries that will be required to hold

the parsed information. If the final parameter is NOT NULL then it *MUST* contain the

maximum number of entries that can be supported (specified via the

Number_Data_Entries member) and the Data_Entries member must point to memory that

contains (at least) that many members).

This function will return BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE if there was

not enough data entries specified (via the Number_Data_Entries member) to satisfy the

parsing of the actual scan response data.

Prototype:

int BTPSAPI GAP_LE_Parse_Scan_Response_Data(

Scan_Response_Data_t *Scan_Response_Data,

GAP_LE_Advertising_Data_t *GAP_LE_Advertising_Data);

Parameters:

Scan_Response_Data Buffer that contains the actual scan response data that is to be

parsed. This buffer must be at least:

SCAN_RESPONSE_DATA_SIZE

bytes long. Note that if the scan rsponse occupies less data

bytes than the data should be padded with zero bytes (0x00).

GAP_LE_Advertising_Data Pointer to the parsed scan response data that has been parsed.

Note that if this parameter is not NULL then the

Number_Data_Entries member must contain the number of

data entries that the Data_Entries member points to (to receive

the parsed data information.

Return:

Non-negative if successful. This value represents the number of valid advertising data

fields that were successfully parsed.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_BUFFER_SPACE

Possible Events:

GAP_LE_Advertising_Enable

The following function is provided to allow the local host the ability to begin an

advertising procedure. An advertising procedure is required to allow a remote Bluetooth

LE device to connect with the local device. The connectability mode and parameters are

set via the connectability parameters passed to this function. This function also accepts

the advertising parameters to apply while advertising. This function also accepts callback

information that will be used to inform the caller (asynchronously) when a remote LE

device (master) connects to the local LE device (slave). This function will return zero if

successful, or a negative return error code if there was an error condition.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 564 of 737 January 10, 2014

Note:

The advertising data and scan response data should be set before this function is called to

enable advertising.

Prototype:

int BTPSAPI GAP_LE_Advertising_Enable(unsigned int BluetoothStackID,

Boolean_t EnableScanResponse,

GAP_LE_Advertising_Parameters_t *GAP_LE_Advertising_Parameters,

GAP_LE_Connectability_Parameters_t *GAP_LE_Connectability_Parameters,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize.

EnableScanResponse Flag which specifies whether or not the device should

send scan response data in response to a scan request.

GAP_LE_Advertising_Parameters Pointer to advertising parameters that control how the

advertising is performed. This structure is defined as

follows:

typedef struct

{

 Word_t Advertising_Interval_Min;

 Word_t Advertising_Interval_Max;

 Byte_t Advertising_Channel_Map;

 GAP_LE_Filter_Policy_t Scan_Request_Filter;

 GAP_LE_Filter_Policy_t Connect_Request_Filter;

} GAP_LE_Advertising_Parameters_t;

where, Advertising_Interval_Min is specified in milli-

seconds and must be between:

MINIMUM_ADVERTISING_INTERVAL

MAXIMUM_ADVERTISING_INTERVAL

and, Advertising_Interval_Max is specified in milli-

seconds and must be between:

MINIMUM_ADVERTISING_INTERVAL

MAXIMUM_ADVERTISING_INTERVAL

and, Advertising_Channel_Map is a bit-mask that

consists of one or more of the following values:

GAP_LE_ADVERTISING_CHANNEL_MAP_

USE_CHANNEL_37

GAP_LE_ADVERTISING_CHANNEL_MAP_

USE_CHANNEL_38

GAP_LE_ADVERTISING_CHANNEL_MAP_

USE_CHANNEL_39

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 565 of 737 January 10, 2014

alternately, to use all channels, the following constant

can be used:

GAP_LE_ADVERTISING_CHANNEL_MAP_

USE_ALL_CHANNELS

and, Scan_Request_Filter specifies the filter to apply

governing how the device is to respond to scan

requests (if enabled). This is one of the following

values:

fpNoFilter

fpWhiteList

and, Connect_Request_Filter specifies the filter to

apply governing how the device is to respond to

connection requests. This is one of the following

values:

fpNoFilter

fpWhiteList

GAP_LE_Connectability_Parameters Specifies the connectability parameters to use while

advertising. This structure is defined as follows:

typedef struct

{

 GAP_LE_Connectability_Mode_t

Connectability_Mode;

 GAP_LE_Address_Type_t

Own_Address_Type;

 GAP_LE_Address_Type_t

Direct_Address_Type;

 BD_ADDR_t

Direct_Address;

} GAP_LE_Connectability_Parameters_t;

where, Connectability_Mode defines the actual

connectability mode. This is one of the following

values:

lcmNonConnectable

lcmConnectable

lcmDirectConnectable

and, Own_Address_Type specifies the address to use

for the connection. This is one of the following

values:

latPublic

latRandom

and, Direct_Address_Type specifies the address to

use when lcmDirectConnectable is used (it is not used

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 566 of 737 January 10, 2014

for the other connectability modes). This is one of the

following values:

latPublic

latRandom

and, Direct_Address specifies the direct address to

use when lcmDirectConnectable is used (it is not used

for the other connectability modes).

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP

layer to dispatch GAP LE event information for this

request.

CallbackParameter User defined value to be used by the GAP layer as an

input parameter for the callback.

Return:

Zero (0) if the scan procedure was successfully cancelled.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Connection_Complete

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Advertising_Disable

The following function is provided to allow the local host the ability to cancel (stop) an

on-going advertising procedure. This function will return zero if successful, or a negative

return error code if there was an error condition.

Prototype:

int BTPSAPI GAP_LE_Advertising_Disable(unsigned int BluetoothStackID);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 567 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Return:

Zero (0) if the advertising procedure was successfully stopped.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Generate_Non_Resolvable_Address

The following function is provided to allow the local host the ability to generate a non

resolvable address. The output of this function can then be used as a random address for

connection purposes. This function will return zero if successful, or a negative return

error code if there was an error condition.

Notes:

If this function is successful, the address that is generated can be passed to the

GAP_LE_Set_Random_Address function and used by the local device.

Prototype:

int BTPSAPI GAP_LE_Generate_Non_Resolvable_Address(

unsigned int BluetoothStackID, BD_ADDR_t *NonResolvableAddress_Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

NonResolvableAddress_Result Buffer that will receive the generated non resolvable

address upon successful execution of this function.

Return:

Zero (0) if the a non resolvable address was successfully generated.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 568 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Generate_Static_Address

The following function is provided to allow the local host the ability to generate a static

private address. The output of this function can then be used as a random address for

connection purposes. This function will return zero if successful, or a negative return

error code if there was an error condition.

Notes:

The Bluetooth Specification has defined that a static private address shall only change

once per power cycle. It is the requirement of the application that this function is only

used to generate a new static address once per power cycle

If this function is successful, the address that is generated can be passed to the

GAP_LE_Set_Random_Address function and used by the local device.

Prototype:

int BTPSAPI GAP_LE_Generate_Static_Address(unsigned int BluetoothStackID,

BD_ADDR_t *StaticAddress_Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

StaticAddress_Result Buffer that will receive the generated static address upon

successful execution of this function.

Return:

Zero (0) if the a non resolvable address was successfully generated.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 569 of 737 January 10, 2014

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Generate_Resolvable_Address

The following function is provided to allow the local host the ability to generate a

resolvable address. The output of this function can then be used as a random address for

connection purposes. This function will return zero if successful, or a negative return

error code if there was an error condition.

Notes:

If this function is successful, the address that is generated can be passed to the

GAP_LE_Set_Random_Address function and used by the local device.

Prototype:

int BTPSAPI GAP_LE_Generate_Resolvable_Address(unsigned int BluetoothStackID,

Encryption_Key_t *IRK, BD_ADDR_t *ResolvableAddress_Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

IRK Identity resolving key (IRK) that is used to generate the

resolvable address.

ResolvableAddress_Result Buffer that will receive a generated resolvable address upon

successful execution of this function.

Return:

Zero (0) if the a resolvable address was successfully generated.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 570 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Resolve_Address

The following function is provided to allow the local host the ability to check to see if a

specified Identity Resolving Key (IRK) and a specified resolvable address can be

resolved. This function will return a BOOLEAN TRUE value if the address was able to

be resolved or FALSE if it was not.

Notes:

If this function is successful, the address that is generated can be passed to the

GAP_LE_Set_Random_Address function and used by the local device.

Prototype:

int BTPSAPI GAP_LE_Resolve_Address(unsigned int BluetoothStackID,

Encryption_Key_t *IRK, BD_ADDR_t ResolvableAddress);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

IRK Identity resolving key (IRK) that is used to resolve the

resolvable address.

ResolvableAddress Bluetooth address that represents the resolvable address that is

attempting to be resolved (using the specified IRK).

Return:

TRUE if the a resolvable address was successfully resolved.

FALSE if the address was not able to be resolved.

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Set_Random_Address

The following function is provided to allow the local host the ability to set the random

address used by the local device. This function will return zero if successful, or a negative

return error code if there was an error condition.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 571 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_LE_Set_Random_Address(unsigned int BluetoothStackID,

BD_ADDR_t RandomAddress);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

RandomAddress Actual random address value to set in the local device.

Return:

Zero (0) if the a resolvable address was successfully generated.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_RANDOM_ADDRESS_IN_USE

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Add_Device_To_White_List

The following function is provided to allow the local host the ability to add one (or more)

devices to the white list maintained by the local device. This function will attempt to add

as many devices as possible (from the specified list) and will return the number of devices

added. The GAP_LE_Read_White_List_Size function can be used to determine how

many devices the local device supports in the white list (simultaneously). This function

will return zero if successful, or a negative return error code if there was an error

condition.

Notes:

The final parameter will contain, on successful completion of this function, the total

number of devices that were written to the device white list.

The white list cannot be changed while a scan or connection is in progress. If this

function is called while a scan or connection is active, the following error code will be

returned:

GAP_LE_ERROR_WHITE_LIST_IN_USE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 572 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_LE_Add_Device_To_White_List(unsigned int BluetoothStackID,

unsigned int DeviceCount, GAP_LE_White_List_Entry_t *WhiteListEntries,

unsigned int *AddedDeviceCount);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

DeviceCount Total number of device list entries that are pointed to by the

WhiteListEntries buffer.

WhiteListEntries Buffer that contains one or more individual white list device

entries to write to the local device. This buffer must point to (at

least) DeviceCount entries. The structure of an individual white

list entry is as follows:

typedef struct

{

 GAP_LE_Address_Type_t Address_Type;

 BD_ADDR_t Address;

} GAP_LE_White_List_Entry_t;

where, Address_Type defines the type of the address that is

represented by this entry. This is one of the following values:

latPublic

latRandom

and Address is the actual device address of the device to write to

the white list.

AddedDeviceCount Upon successful execution of this function contains the total

number of white list entries that were successfully written to the

device white list.

Return:

Zero (0) if at least one device was written to the white list.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_RANDOM_ADDRESS_IN_USE

GAP_LE_ERROR_WHITE_LIST_IN_USE

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 573 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Remove_Device_From_White_List

The following function is provided to allow the local host the ability to remove one (or

more) devices from the white list maintained by the local device. This function will

attempt to delete as many devices as possible (from the specified list) and will return the

number of devices deleted. The GAP_LE_Read_White_List_Size function can be used to

determine how many devices the local device supports in the white list (simultaneously).

This function will return zero if successful, or a negative return error code if there was an

error condition.

Notes:

If the device count parameter is specified as zero then the entire white list will be deleted.

In this case the final parameter will be set to zero and NOT the number of devices that

were deleted.

The final parameter will contain, on successful completion of this function, the total

number of devices that were deleted from the device white list.

The white list cannot be changed while a scan or connection is in progress. If this

function is called while a scan or connection is active, the following error code will be

returned:

GAP_LE_ERROR_WHITE_LIST_IN_USE

Prototype:

int BTPSAPI GAP_LE_Remove_Device_From_White_List(

unsigned int BluetoothStackID, unsigned int DeviceCount, GAP_LE_White_List_Entry_t

*WhiteListEntries,

unsigned int *RemovedDeviceCount);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

DeviceCount Total number of device list entries that are pointed to by the

WhiteListEntries buffer. If this value is specified as zero then the

next parameter is ignored and all devices are removed from the

white list.

WhiteListEntries Buffer that contains one or more individual white list device

entries to remove from the local device. This buffer must point to

(at least) DeviceCount entries. The structure of an individual

white list entry is as follows:

typedef struct

{

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 574 of 737 January 10, 2014

 GAP_LE_Address_Type_t Address_Type;

 BD_ADDR_t Address;

} GAP_LE_White_List_Entry_t;

where, Address_Type defines the type of the address that is

represented by this entry. This is one of the following values:

latPublic

latRandom

and Address is the actual device address of the device to remove

from the white list.

AddedDeviceCount Upon successful execution of this function contains the total

number of white list entries that were successfully removed from

the device white list.

Return:

Zero (0) if at least one device was removed from the white list.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

GAP_LE_ERROR_WHITE_LIST_IN_USE

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Read_White_List_Size

The following function is provided to allow the local host the ability to determine the total

number of devices that can be be present in the white list (simultaneously) on the local

device. This function will return zero if successful, or a negative return error code if there

was an error condition.

Prototype:

int BTPSAPI GAP_LE_Read_White_List_Size(unsigned int BluetoothStackID,

unsigned int *WhiteListSize);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 575 of 737 January 10, 2014

WhiteListSize Total number of device list entries are supported by the local

device. This value is the number of entried NOT the number of

white list entry buffer size in bytes.

Return:

Zero (0) if the white list size was able to be successfully retrieved.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Set_Pairability_Mode

The following function is provided to allow the local host the ability to change the

pairability mode used by the local host. This function will return zero if successful, or a

negative return error code if there was an error condition.

Prototype:

int BTPSAPI GAP_LE_Set_Pairability_Mode(unsigned int BluetoothStackID,

GAP_LE_Pairability_Mode_t PairableMode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

PairableMode Pairability mode to set. This value is one of:

lpmNonPairableMode

lpmPairableMode

Return:

Zero (0) if the pairability mode was successfully set.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 576 of 737 January 10, 2014

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Register_Remote_Authentication

This function is provided to allow a means to register a GAP LE event callback to accept

remote authentication requests. This function accepts as input the GAP LE event callback

information to register. It should be noted that ONLY ONE remote authentication

callback can be installed per Bluetooth device. The caller can un-register the remote

authentication callback that was registered with this function (if successful) by calling the

GAP_LE_Un_Register_Remote_Authentication function.

Note:

A remote authentication event is defined as an authentication event that was not requested

by the local device (i.e. a pairing or authentication request issued from a remote device to

the local device).

Prototype:

int BTPSAPI GAP_LE_Register_Remote_Authentication(unsigned int BluetoothStackID,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the remote authentication callback was successfully registered.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 577 of 737 January 10, 2014

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Authentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Un_Register_Remote_Authentication

This function is provided to allow a mechanism to un-register a previously registered GAP

LE event callback for remote authentication events. This function accepts as input the

Bluetooth stack ID of the Bluetooth device that the remote authentication callback was

registered previously (via a successful call to the

GAP_LE_Register_Remote_Authentication function).

Prototype:

int BTPSAPI GAP_LE_Un_Register_Remote_Authentication(

unsigned int BluetoothStackID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Return:

Zero (0) if the remote authentication callback was successfully un-registered.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 578 of 737 January 10, 2014

GAP_LE_Pair_Remote_Device

This function is provided to allow a means to pair with a remote, connected, device. This

function accepts the device address of the currently connected device to pair with,

followed by the pairing capabilities of the local device. This function also accepts as input

the GAP LE event callback information to use during the pairing process. This function

returns zero if successful or a negative error code if there was an error.

Note:

This function can only be issued by the master of the connection (the initiator of the

connection). The reason is that a slave can only request a security procedure, it cannot

initiate a security procedure.

This function will not create an LE ACL connection to the specified device. The LE ACL

connection to the specified remote device must already exist before calling this function.

Prototype:

int BTPSAPI GAP_LE_Pair_Remote_Device(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_LE_Pairing_Capabilities_t *Capabilities,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to pair with.

Capabilities Pointer to a buffer that holds the pairing capabilities of the local

host. This structure is defined as follows:

typedef struct

{

 GAP_LE_IO_Capability_t IO_Capability;

 Boolean_t OOB_Present;

 GAP_LE_Bonding_Type_t Bonding_Type;

 Boolean_t MITM;

 Byte_t Maximum_Encryption_Key_Size;

 GAP_LE_Key_Distribution_t Receiving_Keys;

 GAP_LE_Key_Distribution_t Sending_Keys;

} GAP_LE_Pairing_Capabilities_t;

where, IO_Capability defines the I/O capabilities of the host.

This is one of the following values:

licDisplayOnly

licDisplayYesNo

licKeyboardOnly

licNoInputNoOutput

licKeyboardDisplay

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 579 of 737 January 10, 2014

and, OOB_Present is a flag that specifies whether the host

contains out of band (OOB) data.

and, Bonding_type defines the type of bonding being requested.

This is one of the following values:

lbtNoBonding

lbtBonding

and, MITM specifies whether man in the middle (MITM)

protection is requested.

and, Maximum_Encryption_Key_Size specifies the largest size of

the encryption key that is required.

and, Receiving_Keys and Sending_Keys members define the keys

that the host would like to receive or send to the device

(respectively). These structures are defined as follows:

typedef struct

{

 Boolean_t Encryption_Key;

 Boolean_t Identification_Key;

 Boolean_t Signing_Key;

} GAP_LE_Key_Distribution_t;

where, each member is a flag that specifies whether that particular

key type is requested.

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the pairing request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Authentication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 580 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Authentication_Response

This function is provided to allow a mechanism for the local device to respond to GAP LE

authentication events. This function is used to specify the authentication information for

the specified Bluetooth device. This function accepts as input, the Bluetooth protocol

stack ID of the Bluetooth device that has requested the authentication action, and the

authentication response information (specified by the caller).

Note:

This function should be called to respond to authentication requests that were received via

any of the installed callbacks:

 Pairing callback

 Remote authentication callback

Prototype:

int BTPSAPI GAP_LE_Authentication_Response(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR,

GAP_LE_Authentication_Response_Information_t *GAP_LE_Authentication_Information);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol

Stack via a call to BSC_Initialize.

BD_ADDR Device address of the Bluetooth device that is being

authenticated.

GAP_LE_Authentication_Information Pointer to a structure that holds authentication

information.

Return:

Zero (0) if the remote authentication response was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_PAIRING_NOT_ACTIVE

BTPS_ERROR_DEVICE_HCI_ERROR

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 581 of 737 January 10, 2014

Possible Events:

etLE_Authentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Reestablish_Security

This function is provided to allow a means to re-establish security credentials that were

previously valid. This function performs differently depending upon if the local device is

a master or a slave to the device specified. If the local device is a master then this function

will process the specified security parameters and attempt to re-authenticate the device. If

the local device is a slave then this function will request the master to re-establish the

security. The reason for the differing behavior is that the slave can only request security

be initiated, it cannot initiate the security process itself. This function returns zero if

successful or a negative error code if there was an error.

Note:

This function will not create an LE ACL connection to the specified device. The LE ACL

connection to the specified remote device must already exist before calling this function.

Prototype:

int BTPSAPI GAP_LE_Reestablish_Security(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_LE_Security_Information_t *SecurityInformation,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to re-establish

security with.

SecurityInformation Pointer to a buffer that holds the security information required

to re-establish the security. This structure is defined as follows:

typedef struct

{

 Boolean_t Local_Device_Is_Master;

 union

 {

 GAP_LE_Slave_Security_Information_t

Slave_Information;

 GAP_LE_Master_Security_Information_t Master_Information;

 } Security_Information;

} GAP_LE_Security_Information_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 582 of 737 January 10, 2014

where, Local_Device_Is_master is a flag that specifies whether

or not the local device is the master or the slave of this

connection.

If the local device IS NOT the master (i.e. this parameter is

FALSE), then the Slave_Information structure needs to be

populated. The format of the Slave_Information member is

defined as:

typedef struct

{

 GAP_LE_Bonding_Type_t Bonding_Type;

 Boolean_t MITM;

} GAP_LE_Slave_Security_Information_t;

and, contains the required security parameters that the slave is

requesting (should match prior security establishment).

If the local device IS the master (i.e. this parameter is TRUE),

then the Master_Information structure needs to be populated.

The format of the Master_Information member is defined as:

typedef struct

{

 Byte_t Encryption_Key_Size;

 Long_Term_Key_t LTK;

 Word_t EDIV;

 Random_Number_t Rand;

} GAP_LE_Master_Security_Information_t;

and, contains the required security parameters that the master is

requesting (should match prior security establishment).

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the re-establish security request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Authentication

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 583 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Request_Security

This function is provided to allow a means for a slave device to request that the master (of

the connection) perform a pairing operation or re-establishing prior security. This

function can only be called by a slave device. The reason for this is that the slave can only

request security be initiated, it cannot initate the security process itself. This function

returns zero if successful or a negative error code if there was an error.

Note:

This function will not create an LE ACL connection to the specified device. The LE ACL

connection to the specified remote device must already exist before calling this function.

Prototype:

int BTPSAPI GAP_LE_Request_Security(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_LE_Bonding_Type_t Bonding_Type, Boolean_t MITM,

GAP_LE_Event_Callback_t GAP_LE_Event_Callback,

unsigned long CallbackParameter);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to request

security from.

Bonding_Type The required bonding type for the security being requested. This

value is one of the following:

lbtNoBonding

lbtBonding

MITM Flag that specifies whether man in the middle (MITM) protection

is required.

GAP_LE_Event_Callback Pointer to a callback function to be used by the GAP layer to

dispatch GAP LE event information for this request.

CallbackParameter User defined value to be used by the GAP layer as an input

parameter for the specified callback.

Return:

Zero (0) if the security request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 584 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Authentication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

GAP_LE_Set_Fixed_Passkey

This function is provided to allow a means for a fixed passkey to be used whenever the

local Bluetooth device is chosen to display a passkey during a pairing operation. This

fixed passkey is only used when the local Bluetooth device is chosen to display the

passkey, based on the remote I/O capabilies and the local I/O capabilities.

Prototype:

int BTPSAPI GAP_LE_Set_Fixed_Passkey(unsigned int BluetoothStackID,

DWord_t *Fixed_Display_Passkey);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Fixed_Display_Passkey Optional pointer to the fixed display passkey to use. If this

parameter is NULL, then a fixed display passkey that was

previously set using this function is no longer used. If this

parameter is non-NULL then the passkey that it points to is used

for all future pairing operations where the local Bluetooth device

displays the passkey.

Return:

Zero (0) if the fixed passkey was successfully configured.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 585 of 737 January 10, 2014

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

GAP_LE_Query_Encryption_Mode

This function is provided to allow a means to query the current encryption mode for the

LE connection that is specified.

Prototype:

int BTPSAPI GAP_LE_Query_Encryption_Mode(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_Encryption_Mode_t *GAP_Encryption_Mode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to query the link

encryption mode.

GAP_Encryption_Mode Pointer to store the link encryption mode. This parameter is not

optional, and can not be NULL. If this function returns success

this will point to one of the following values:

emDisabled

emEnabled

Return:

Zero (0) if the encryption mode for the specified connection was successfully obtained.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 586 of 737 January 10, 2014

GAP_LE_Query_Connection_Handle

The following function is provided to allow a means to query the LE connection handle of

a connection to a remote Bluetooth Low Energy device. If a connection exists to the

remote device specified, the LE connection handle is returned in the buffer passed to this

function. This function will return zero on success, or a negative return error code if there

was an error. If this function returns success, then the Connection_Handle variable will

contain the current LE connection handle for the LE connection to the specified Bluetooth

device address.

Note:

This function is only for LE connections. This function will NOT return connection

handles for Bluetooth BR/EDR connections.

Prototype:

int BTPSAPI GAP_LE_Query_Connection_Handle(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Word_t *Connection_Handle);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Address of the Bluetooth Low Energy device of which to query

the connection handle.

Connection_Handle Pointer to a variable that will receive the connection handle

associated with the specified Bluetooth device address.

Return:

Zero (0) if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_NOT_CONNECTED

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 587 of 737 January 10, 2014

GAP_LE_Query_Connection_Parameters

The following function is provided to allow a means to query the LE connection

parameters for a connection to a remote Bluetooth Low Energy device. If a connection

exists to the remote device specified, the current LE connection parameters are returned in

the structure passed to this function. This function will return zero on success, or a

negative return error code if there was an error. If this function returns success, then the

Current_Connection_Parameters variable will contain the current LE connection

parameters for the LE connection to the specified Bluetooth device address.

Prototype:

int BTPSAPI GAP_LE_Query_Connection_Parameters(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR,

GAP_LE_Current_Connection_Parameters_t *Current_Connection_Parameters);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize.

BD_ADDR Address of the Bluetooth Low Energy device of which to

query the connection handle.

Current_Connection_Parameters Pointer to a structure that will receive the connection

parameters for the connection to the specified device.

Return:

Zero (0) if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_DEVICE_NOT_CONNECTED

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Generate_Long_Term_Key

This function is provided to allow a means for creating a new long term key (LTK). This

function accepts the diversifying hiding key (DHK) and the encryption rook key (ER).

Using these inputs this function generates the long term key (LTK), the diversifier (DIV),

and the encrypted diversifier (EDIV) values. This function returns zero if successful or a

negative error code if there was an error.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 588 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_LE_Generate_Long_Term_Key(unsigned int BluetoothStackID,

Encryption_Key_t *DHK, Encryption_Key_t *ER, Long_Term_Key_t *LTK_Result,

Word_t *DIV_Result, Word_t *EDIV_Result, Random_Number_t *Rand_Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to generate the

long term key (LTK) for.

DHK Diversifying hiding key used as input to generate the long term

key (LTK).

ER Encryption root key (ERK) used with the DHK to generate the

long term key (LTK).

LTK_Result Pointer to a buffer that will receive the generated long term key

(LTK).

DIV_Result Pointer to a buffer that will receive the diversifier (DIV) that was

used to generate the long term key (LTK).

EDIV_Result Pointer to a buffer that will receive the encrypted diversifier

(EDIV) that was used to generate the long term key (LTK).

Rand_Result Pointer to a buffer that will receive the random number that was

used to generate the long term key (LTK).

Return:

Zero (0) if the long term key (LTK) was successfully generated.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 589 of 737 January 10, 2014

GAP_LE_Regenerate_Long_Term_Key

This function is provided to allow a means for re-generating a long term key (LTK) given

the required security parameters. This function accepts the diversifying hiding key (DHK),

the encryption rook key (ER), the encrypted diversifier (EDIV), and a random number

(Rand). Using these inputs this function re-generates a long term key (LTK). This

function returns zero if successful or a negative error code if there was an error.

Prototype:

int BTPSAPI GAP_LE_Regenerate_Long_Term_Key(unsigned int BluetoothStackID,

Encryption_Key_t *DHK, Encryption_Key_t *ER, Word_t EDIV,

Random_Number_t *Rand, Long_Term_Key_t *LTK_Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Bluetooth device address of the connected device to generate the

long term key (LTK) for.

DHK Diversifying hiding key used as input to re-generate the long term

key (LTK).

ER Encryption root key (ERK) that will be used to re-generate the

long term key (LTK).

EDIV Encrypted diversifier (EDIV) that will be used to re-generate the

long term key (LTK).

Rand Random number that will be used to during the re-generation

process.

LTK_Result Pointer to a buffer that will receive the generated long term key

(LTK).

Return:

Zero (0) if the long term key (LTK) was successfully re-generated.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 590 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Diversify_Function

The following function is provided to allow a means of performing the Diversify

Function, D1, as specified in the Bluetooth 4.0 specification, Volume 3, Part H, section

5.2.2.1 of the Core specification. This function accepts the input Encryption Key, the D

and R values, and a pointer to place the encryption key result. This function returns zero if

succesfull or a negative error code.

Prototype:

int BTPSAPI GAP_LE_Diversify_Function(unsigned int BluetoothStackID,

Encryption_Key_t *Key, Word_t DIn, Word_t RIn, Encryption_Key_t *Result);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

Key Encryption key used as input to the diversify function.

DIn D value used as input to the diversify function.

RIn R value used as input to the diversify function.

Result Pointer to a buffer that will receive the generated encryption key.

Return:

Zero (0) if the diversify function completed successfully.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 591 of 737 January 10, 2014

GAP_LE_Connection_Parameter_Update_Request

The following function is provided to allow a means for a slave device to request that the

master update the connection parameters. This function can only be issued by the slave

device. This function is asynchronous in nature because the master has to accept the

parameter request. This function returns zero if succesfull or a negative error code.

Note:

All connection parameters to this function are specified in milli-seconds except the slave

latency which is specified in number of connection events.

Prototype:

int BTPSAPI GAP_LE_Connection_Parameter_Update_Request(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR,

Word_t Connection_Interval_Min, Word_t Connection_Interval_Max,

Word_t Slave_Latency, Word_t Supervision_Timeout);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the connected device that the slave is

requesting the connection parameter update of.

Connection_Interval_Min Minimum requested connection interval. This value is specified

in milli-seconds and must be between:

MINIMUM_MINIMUM_CONNECTION_INTERVAL

MAXIMUM_MINIMUM_CONNECTION_INTERVAL

Note the default minimum connection interval is defined by the

constant:

DEFAULT_MINIMUM_CONNECTION_INTERVAL

Connection_Interval_Max Maximum requested connection interval. This value is specified

in milli-seconds and must be between:

MINIMUM_MAXIMUM_CONNECTION_INTERVAL

MAXIMUM_MAXIMUM_CONNECTION_INTERVAL

Note the default maximum connection interval is defined by the

constant:

DEFAULT_MAXIMUM_CONNECTION_INTERVAL

Slave_Latency Requested slave latency. This value is specified in number of

connection events and must be between:

MINIMUM_SLAVE_LATENCY

MAXIMUM_SLAVE_LATENCY

Note the default slave latency is defined by the constant:

DEFAULT_SLAVE_LATENCY

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 592 of 737 January 10, 2014

Supervision_Timeout Requested supervision timeout. This value is specified in milli-

seconds and must be between:

MINIMUM_LINK_SUPERVISION_TIMEOUT

MAXIMUM_LINK_SUPERVISION_TIMEOUT

Note the default link supervision timeout is defined by the

constant:

DEFAULT_LINK_SUPERVISION_TIMEOUT

Return:

Zero (0) if the connection update request was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Connection_Parameter_Update_Response

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Connection_Parameter_Update_Response

The following function is provided to allow a means for a master device to respond to a

connection update request from a slave that has requested an update to the connection

parameters. This function can only be issued by the master device. This function returns

zero if succesfull or a negative error code.

Note:

If the connection parameters are accepted, then:

 the slave is notified of the connection parameters that were accepted

 the new connection parameters are applied to the connection

Prototype:

int BTPSAPI GAP_LE_Connection_Parameter_Update_Response(

unsigned int BluetoothStackID, BD_ADDR_t BD_ADDR, Boolean_t Accept,

GAP_LE_Connection_Parameters_t *ConnectionParameters);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 593 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the connected device that the master is

responding to the connection parameter update of.

Accept Flag that specifies whether the slave requested parameters were

accepted. If this value is FALSE then the next parameter is

ignored. If TRUE, the next parameter specifies the new

connection parameters.

ConnectionParameters Specifies the new, accepted, connection parameters of the

connection to the remote device. This structure is defined as

follows:

typedef struct

{

 Word_t Connection_Interval_Min;

 Word_t Connection_Interval_Max;

 Word_t Slave_Latency;

 Word_t Supervision_Timeout;

 Word_t Minimum_Connection_Length;

 Word_t Maximum_Connection_Length;

} GAP_LE_Connection_Parameters_t;

Note that ALL parameters are specified in milli-seconds except

the Slave_Latency parameter which is specified in connection

events.

where, Connection_Interval_Min is specified in milli-seconds and

must be between:

MINIMUM_MINIMUM_CONNECTION_INTERVAL

MAXIMUM_MINIMUM_CONNECTION_INTERVAL

Note the default minimum connection interval is defined by the

constant:

DEFAULT_MINIMUM_CONNECTION_INTERVAL

and, Connection_Interval_Max is specified in milli-seconds and

must be between:

MINIMUM_MAXIMUM_CONNECTION_INTERVAL

MAXIMUM_MAXIMUM_CONNECTION_INTERVAL

Note the default maximum connection interval is defined by the

constant:

DEFAULT_MAXIMUM_CONNECTION_INTERVAL

and, Slave_Latency is specified in number of connection events

and must be between:

MINIMUM_SLAVE_LATENCY

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 594 of 737 January 10, 2014

MAXIMUM_SLAVE_LATENCY

Note the default slave latency is defined by the constant:

DEFAULT_SLAVE_LATENCY

and, Supervision_Timeout is specified in milli-seconds and must

be between:

MINIMUM_LINK_SUPERVISION_TIMEOUT

MAXIMUM_LINK_SUPERVISION_TIMEOUT

Note the default link supervision timeout is defined by the

constant:

DEFAULT_LINK_SUPERVISION_TIMEOUT

and, the Minimum_Connection_Length and

Maximum_Connection_Length parameters are specified in milli-

seconds and represent the expected minimum and maximum

connection events for the connection. These values must be

between:

MINIMUM_CONNECTION_EVENT_LENGTH

MAXIMUM_CONNECTION_EVENT_LENGTH

Return:

Zero (0) if the connection update response was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GAP_LE_Update_Connection_Parameters

The following function is provided to allow a means for a master device to attempt to

update the connection parameters for an LE connection. This function can only be issued

by the master device. This function returns zero if succesfull or a negative error code.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 595 of 737 January 10, 2014

Prototype:

int BTPSAPI GAP_LE_Update_Connection_Parameters(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, GAP_LE_Connection_Parameters_t *ConnectionParameters);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize.

BD_ADDR Device address of the connected device that the master is

responding to the connection parameter update of.

ConnectionParameters Specifies the new connection parameters to attempt to apply to the

connection to the remote device. This structure is defined as

follows:

typedef struct

{

 Word_t Connection_Interval_Min;

 Word_t Connection_Interval_Max;

 Word_t Slave_Latency;

 Word_t Supervision_Timeout;

 Word_t Minimum_Connection_Length;

 Word_t Maximum_Connection_Length;

} GAP_LE_Connection_Parameters_t;

Note that ALL parameters are specified in milli-seconds except

the Slave_Latency parameter which is specified in connection

events.

where, Connection_Interval_Min is specified in milli-seconds and

must be between:

MINIMUM_MINIMUM_CONNECTION_INTERVAL

MAXIMUM_MINIMUM_CONNECTION_INTERVAL

Note the default minimum connection interval is defined by the

constant:

DEFAULT_MINIMUM_CONNECTION_INTERVAL

and, Connection_Interval_Max is specified in milli-seconds and

must be between:

MINIMUM_MAXIMUM_CONNECTION_INTERVAL

MAXIMUM_MAXIMUM_CONNECTION_INTERVAL

Note the default maximum connection interval is defined by the

constant:

DEFAULT_MAXIMUM_CONNECTION_INTERVAL

and, Slave_Latency is specified in number of connection events

and must be between:

MINIMUM_SLAVE_LATENCY

MAXIMUM_SLAVE_LATENCY

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 596 of 737 January 10, 2014

Note the default slave latency is defined by the constant:

DEFAULT_SLAVE_LATENCY

and, Supervision_Timeout is specified in milli-seconds and must

be between:

MINIMUM_LINK_SUPERVISION_TIMEOUT

MAXIMUM_LINK_SUPERVISION_TIMEOUT

Note the default link supervision timeout is defined by the

constant:

DEFAULT_LINK_SUPERVISION_TIMEOUT

and, the Minimum_Connection_Length and

Maximum_Connection_Length parameters are specified in milli-

seconds and represent the expected minimum and maximum

connection events for the connection. These values must be

between:

MINIMUM_CONNECTION_EVENT_LENGTH

MAXIMUM_CONNECTION_EVENT_LENGTH

Return:

Zero (0) if the connection update response was successfully submitted.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_GAP_NOT_INITIALIZED

BTPS_ERROR_LOCAL_CONTROLLER_DOES_NOT_

SUPPORT_LE

BTPS_ERROR_INSUFFICIENT_RESOURCES

BTPS_ERROR_INVALID_DEVICE_ROLE_MODE

BTPS_ERROR_FEATURE_NOT_CURRENTLY_ACTIVE

Possible Events:

etLE_Connection_Parameter_Updated

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.1.3 GAP Event Callbacks

There is one event callback prototype for all callback events in GAP for BR/EDR. These

callbacks may be permanent (set in place for long periods of time) or dynamic (active only for

getting the results of one query). The callback prototype is defined below.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 597 of 737 January 10, 2014

GAP_Event_Callback_t

The following declared type represents the Prototype Function for the GAP event

callback. This function will be called whenever a callback has been registered for the

specified GAP action that is associated with the specified Bluetooth Stack ID. This

function passes to the caller the Bluetooth Stack ID, the GAP event data of the specified

event, and the GAP event callback parameter that was specified when this callback was

installed. The caller is free to use the contents of the GAP event data ONLY in the

context of this callback. If the caller requires the data for a longer period of time, then the

callback function MUST copy the data into another data buffer. This function is

guaranteed NOT to be invoked more than once simultaneously for the specified installed

callback (i.e. this function DOES NOT have be reentrant). It needs to be noted however,

that if the same callback is installed more than once, then the callbacks will be called

serially. Because of this, the processing in this function should be as efficient as possible.

It should also be noted that this function is called in the thread context of a thread that the

user does NOT own. Therefore, processing in this function should be as efficient as

possible (this argument holds anyway because other GAP events will not be processed

while this function call is outstanding).

Note: This function MUST NOT Block and wait for events that can only be satisfied by

receiving other GAP events. A deadlock WILL occur because NO GAP event callbacks

will be issued while this function is currently outstanding.

Prototype:

void (BTPSAPI *GAP_Event_Callback_t)(unsigned int BluetoothStackID,

GAP_Event_Data_t *GAP_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GAP_Event_Data Pointer to the passed event data. This structure has the

following format:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 598 of 737 January 10, 2014

typedef

{

 GAP_Event_Type_t Event_Data_Type;

 Word_t Event_Data_Size;

 union

 {

 GAP_Inquiry_Event_Data_t

*GAP_Inquiry_Event_Data;

 GAP_Encryption_Mode_Event_Data_t

*GAP_Encryption_Mode_Event_Data;

 GAP_Authentication_Event_Data_t

*GAP_Authentication_Event_Data;

 GAP_Remote_Name_Event_Data_t

*GAP_Remote_Name_Event_Data;

 GAP_Inquiry_Entry_Event_Data_t

*GAP_Inquiry_Entry_Event_Data;

 GAP_Inquiry_With_RSSI_Entry_Event_Data_t

*GAP_Inquiry_With_RSSI_Entry_Event_Data;

 GAP_Extended_Inquiry_Entry_Event_Data_t

*GAP_Extended_Inquiry_Entry_Event_Data;

 GAP_Encryption_Refresh_Complete_Event_Data_t

*GAP_Encryption_Refresh_Complete_Event_Data;

 GAP_Remote_Features_Event_Data_t

*GAP_Remote_Features_Event_Data;

 GAP_Remote_Version_Information_Event_Data_t

*GAP_Remote_Version_Information_Event_Data;

 } Event_Data;

} GAP_Event_Data_t;

where, GAP_Event_Type_t is an enumerated type with the values

listed in the table in section 3.1.4.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

There is one event callback prototype for all callback events in GAP for LE. These callbacks may

be permanent (set in place for long periods of time) or dynamic (active only for getting the results

of one query). The callback prototype is defined below.

GAP_LE_Event_Callback_t

The following declared type represents the Prototype Function for the GAP LE event

callback. This function will be called whenever a callback has been registered for the

specified GAP LE action that is associated with the specified Bluetooth Stack ID. This

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 599 of 737 January 10, 2014

function passes to the caller the Bluetooth Stack ID, the GAP LE event data of the

specified event, and the GAP LE event callback parameter that was specified when this

callback was installed. The caller is free to use the contents of the GAP LE event data

ONLY in the context of this callback. If the caller requires the data for a longer period of

time, then the callback function MUST copy the data into another data buffer. This

function is guaranteed NOT to be invoked more than once simultaneously for the specified

installed callback (i.e. this function DOES NOT have be reentrant). It needs to be noted

however, that if the same callback is installed more than once, then the callbacks will be

called serially. Because of this, the processing in this function should be as efficient as

possible. It should also be noted that this function is called in the thread context of a

thread that the user does NOT own. Therefore, processing in this function should be as

efficient as possible (this argument holds anyway because other GAP LE events will not

be processed while this function call is outstanding).

Note: This function MUST NOT Block and wait for events that can only be satisfied by

receiving other GAP LE events. A deadlock WILL occur because NO GAP LE event

callbacks will be issued while this function is currently outstanding.

Prototype:

void (BTPSAPI *GAP_LE_Event_Callback_t)(unsigned int BluetoothStackID,

GAP_LE_Event_Data_t *GAP_LE_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GAP_LE_Event_Data Pointer to the passed event data. See definition in section 3.1.4

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.1.4 GAP Events

The events that can be generated by the GAP profile portion of the Bluetooth Stack are listed in

the table below and are described in the text that follows.

Event Description

etInquiry_Result Notify the host of the result of a completed inquiry

(including all found devices).

etEncryption_Change_Result Notify the host of a device link encryption change.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 600 of 737 January 10, 2014

etAuthentication Notify the host of a GAP authentication event.

etRemote_Name_Result Notify the host of the result of a completed remote name

request.

etInquiry_Entry_Result Notify the host of an individual inquiry result.

etInquiry_With_RSSI_Entry_

Result

Notify the host of an individual inquiry result with RSSI

information.

etExtended_Inquiry_Entry_Result Notify the host of an individual inquiry result that

contains Extended Inquiry Result information.

etEncryption_Refresh_Complete Notify the host of the result of a completed encryption

refresh request.

etRemote_Features_Result Notify the host of the result of a completed remote

features request.

etRemote_Version_Information_

Result

Notify the host of the result of a completed remote

version information request.

etLE_Remote_Features_Result Notify the host of the result of a completed LE remote

features request.

etLE_Advertising_Report Notify the host of an individual advertising report that

was received during a scanning procedure.

etLE_Connection_Complete Notify the host that a device is now connected.

etLE_Disconnection_Complete Notify the host that a device is no longer connected.

etLE_Encryption_Change Notify the host of a LE device link encryption change.

etLE_Encryption_Refresh_Complete Notify the host of the result of a completed LE

encryption refresh request.

etLE_Authentication Notify the host of a GAP LE authentication event.

etLE_Connection_Parameter_

Update_Request

Notify the host of a connection parameter update request

(received by master from a connected slave).

etLE_Connection_Parameter_

Update_Response

Notify the host of the status of a connection parameter

update request (received by slave from a connected

master).

etLE_Connection_Parameter_Updat

ed

Notify the host of a change in the connection parameters

for a specified connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 601 of 737 January 10, 2014

etInquiry_Result

This event is dispatched when the Inquiry procedure is complete (normally, and not when

cancelled). This event uses the following structure to hold the GAP inquiry event data to

return all returned inquiry results once the Inquiry is complete.

Structure:

typedef struct

{

 Word_t Number_Devices;

 GAP_Inquiry_Data_t *GAP_Inquiry_Data;

} GAP_Inquiry_Event_Data_t;

Fields:

Number_Devices Number of Inquiry data entries that the GAP_Inquiry_Data

member points to (if non-zero).

GAP_Inquiry_Data Pointer to an array of GAP Inquiry data structures. Each

structure has the following format:
typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Byte_t Page_Scan_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

} GAP_Inquiry_Data_t;

where BD_ADDR is the address of the Bluetooth device,

Page_Scan_Repetition_Mode memberrepresents the Page Scan

Modes that the remote device supports. The currently defined

values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

The Page_Scan_Period_Mode member defines the Page Scan

Period Mode that the remote device is using. The currently

defined values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

The Page_Scan_Mode member defines the Page Scan Mode

that the remote device is using. The currently defined values

are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 602 of 737 January 10, 2014

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_STANDARD_

SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_INTERLACED_

SCAN

The Clock_Offset member defines the clock offset of the remote

device. Bits 16 to 2 represent the difference between the master

and slave device clocks, mapped to bits 14 to 0 of this parameter

(i.e., computed from ((clock_slave – clock_master) ShiftRight

2). Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if

the offset value is valid.

The Class_of_Device member is a bit maks that determines the

Bluetooth Class of Device that the device is using. See the

HCI_Read_Class_of_Device command for a complete listing of

feature bits.

etEncryption_Change_Result

This event is dispatched when the link level encryption status for a specific device

completes (either successfully or with an error).

Structure:

typedef

{

 BD_ADDR_t Remote_Device;

 Byte_t Encryption_Change_Status;

 GAP_Encryption_Mode_t Encryption_Mode;

} GAP_Encryption_Mode_Event_Data_t;

Fields:

BD_ADDR Address of the Bluetooth device.

Encryption_Change_Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

Encryption_Mode The supported encryption mode types that the Bluetooth device

can be set to. Possible Values are:

emDisabled

emEnabled

etAuthentication

This event is dispatched whenever an authentication event occurs. The authentication

information itself contains the type of authentication that actually occurred.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 603 of 737 January 10, 2014

Structure:

typedef struct

{

 GAP_Authentication_Event_Type_t GAP_Authentication_Event_Type;

 BD_ADDR_t Remote_Device;

 union

 {

 Byte_t Authentication_Status;

 Byte_t Secure_Simple_Pairing_Status;

Boolean_t Remote_IO_Capabilities_Known;

 GAP_Authentication_Event_Link_Key_Info_t Link_Key_Info;

 DWord_t Numeric_Value;

 GAP_Keypress_t Keypress_Type;

 GAP_IO_Capabilites_t IO_Capabilities;

 } Authentication_Event_Data;

} GAP_Authentication_Event_Data_t;

Fields:

GAP_Authentication_Event_Type Specifies the data member of the struct that is valid.

Possible values and the accompanying data are:

Authentication Event Type Accompanying data

atLinkKeyRequest No further data

atPINCodeRequest No further data

atAuthenticationStatus Authentication_Status

atLinkKeyCreation Link_Key_Info

atKeypressNotification Keypress_Type

atUserConfirmationRequest Numeric_Value

atPasskeyNotification Numeric_Value

atPasskeyRequest No further data

etRemoteOutOfBandDataRequest No further data

atIOCapabilityRequest Remote_IO_Capabilities_Known

atIOCapabilityResponse IO_Capabilities

atSecureSimplePairingComplete Secure_Simple_Pairing_Status

BD_ADDR Bluetooth address of the remote device.

Link_Key_Info Link key authentication information calculated for the remote

device. This structure is defined as follows:

typedef

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 604 of 737 January 10, 2014

{

 Link_Key_t Link_Key;

 Byte_t Key_Type;

} GAP_Authentication_Event_Link_Key_Info_t;

where, Key_Type is defined to be one of the following:

HCI_LINK_KEY_TYPE_COMBINATION_KEY

HCI_LINK_KEY_TYPE_LOCAL_UNIT_KEY

HCI_LINK_KEY_TYPE_REMOTE_UNIT_KEY

HCI_LINK_KEY_TYPE_DEBUG_COMBINATION_KEY

HCI_LINK_KEY_TYPE_UNAUTHENTICATED_

COMBINATION_KEY

HCI_LINK_KEY_TYPE_AUTHENTICATED_

COMBINATION_KEY

HCI_LINK_KEY_TYPE_CHANGED_COMBINATION_KEY

HCI_LINK_KEY_TYPE_INVALID_KEY_TYPE

Numeric_Value Passkey or User Confirmation authentication information sent

from the remote device.

Keypress_Type Keypress type authentication information sent from the remote

device. This value will be one of the following:

kpEntryStarted

kpDigitEntered

kpDigitErased

kpCleared

kpEntryCompleted

IO_Capabilities I/O capabilities authentication information sent from the remote

device. This value will be one of the following:

icDisplayOnly

icDisplayYesNo

icKeyboardOnly

icNoInputNoOutput

etRemote_Name_Result

This event is dispatched when a remote name result operation is completed (either

successfully or with an error.

Structure:

typedef

{

 Byte_t Remote_Name_Status;

 BD_ADDR_t Remote_Device;

 char *Remote_Name;

} GAP_Remote_Name_Event_Data_t;

Fields:

Remote_Name_Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 605 of 737 January 10, 2014

Remote_Device The Bluetooth device address of the device queried.

Remote_Name The user-friendly name of the remote device in a null-

terminated string.

etInquiry_Entry_Result

This event is dispatched whenever a remote device is discovered during an inquiry

procedure AND the local inquiry mode is set to imStandard (which is the default).

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Byte_t Page_Scan_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

} GAP_Inquiry_Entry_Event_Data_t;

Fields:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the remote device

supports. The currently defined values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Period_Mode Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Page_Scan_Mode The other part of the supported Page Scan Modes that the

remote device supports. The currently defined values are:

Bluetooth Version 1.1

HCI_PAGE_SCAN_MODE_MANDATORY

HCI_PAGE_SCAN_MODE_OPTIONAL_I

HCI_PAGE_SCAN_MODE_OPTIONAL_II

HCI_PAGE_SCAN_MODE_OPTIONAL_III

Bluetooth Version 1.2

HCI_PAGE_SCAN_MODE_MANDATORY_

STANDARD_SCAN

HCI_PAGE_SCAN_MODE_OPTIONAL_

INTERLACED_SCAN

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 606 of 737 January 10, 2014

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

Class_of_Device Bit mask list of features that determine the class of device for

this Bluetooth device. See the HCI_Read_Class_of_Device

command for a complete listing of feature bits.

etInquiry_With_RSSI_Entry_Result

This event is dispatched whenever a remote device is discovered during an inquiry

procedure AND the local inquiry mode is set to imRSSI.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

 Byte_t RSSI;

} GAP_Inquiry_With_RSSI_Entry_Event_Data_t;

Fields:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the remote device

supports. The currently defined values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Period_Mode Current setting of this parameter. Possible values are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Clock_Offset Bits 16 to 2 of the difference between the master and slave

device clocks, mapped to bits 14 to 0 of this parameter (i.e.,

computed from ((clock_slave – clock_master) ShiftRight 2).

Bit 15 (MSB) is the Clock_Offset_Valid flag which is 1 if the

offset value is valid.

Class_of_Device Bit mask list of features that determine the class of device for

this Bluetooth device. See the HCI_Read_Class_of_Device

command for a complete listing of feature bits.

RSSI RSSI value returned for the remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 607 of 737 January 10, 2014

etExtended_Inquiry_Entry_Result

This event is dispatched whenever a remote device is discovered during an inquiry

procedure AND the local inquiry mode is set to imExtended.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Page_Scan_Repetition_Mode;

 Byte_t Page_Scan_Period_Mode;

 Class_of_Device_t Class_of_Device;

 Word_t Clock_Offset;

 Byte_t RSSI;

 GAP_Extended_Inquiry_Response_Data_t Extended_Inquiry_Response_Data;

 Extended_Inquiry_Response_Data_t *Raw_Extended_Inquiry_Response_Data;

} GAP_Extended_Inquiry_Entry_Event_Data_t;

Fields:

BD_ADDR Address of the Bluetooth device.

Page_Scan_Repetition_Mode Part of the supported Page Scan Modes that the

remote device supports. The currently defined

values are:

HCI_PAGE_SCAN_REPETITION_MODE_R0

HCI_PAGE_SCAN_REPETITION_MODE_R1

HCI_PAGE_SCAN_REPETITION_MODE_R2

Page_Scan_Period_Mode Current setting of this parameter. Possible values

are:

HCI_PAGE_SCAN_PERIOD_MODE_P0

HCI_PAGE_SCAN_PERIOD_MODE_P1

HCI_PAGE_SCAN_PERIOD_MODE_P2

Clock_Offset Bits 16 to 2 of the difference between the master and

slave device clocks, mapped to bits 14 to 0 of this

parameter (i.e., computed from ((clock_slave –

clock_master) ShiftRight 2). Bit 15 (MSB) is the

Clock_Offset_Valid flag which is 1 if the offset

value is valid.

Class_of_Device Bit mask list of features that determine the class of

device for this Bluetooth device. See the

HCI_Read_Class_of_Device command for a

complete listing of feature bits.

RSSI RSSI value returned for the remote device.

Extended_Inquiry_Response_Data Container structure which contains the parsed

Extended Inquiry Result data. This structure

contains a count and a pointer to a list of each

individual Extended Inquiry Result items.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 608 of 737 January 10, 2014

Raw_Extended_Inquiry_Response_Data Pointer to the actual, raw, un-parsed, Extended

Inquiry Result data that was returned during the

inquiry procedure.

etEncryption_Refresh_Result

This event is dispatched when the link level encryption refresh status for a specific device

completes (either successfully or with an error).

Structure:

typedef struct

{

 BD_ADDR_t Remote_Device;

 Byte_t Status;

} GAP_Encryption_Refresh_Complete_Event_Data_t;

Fields:

Remote_Device Address of the Bluetooth device for which the event is valid.

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

etRemote_Features_Result

This event is dispatched when a remote device features request for a specific device

completes (either successfully or with an error). Please see the description for the

etRead_Remote_Supported_Features_Complete_Event event in the HCI section for a

more detailed description of the parameters of the his event.

Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 LMP_Features_t Features;

 Byte_t Page_Number;

 Byte_t Maximum_Page_Number;

} GAP_Remote_Features_Event_Data_t;

Fields:

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

BD_ADDR Address of the Bluetooth device for which the event is valid.

Features LMP features of the remote device.

Page_Number LMP page number that the returned LMP features are located.

Maximum_Page_Number Largest LMP page number that the remote device supports (for

LMP feature requests).

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 609 of 737 January 10, 2014

etRemote_Version_Information_Result

This event is dispatched when a remote device version information request for a specific

device completes (either successfully or with an error). Please see the description for the

etRead_Remote_Version_Information_Complete_Event event in the HCI section for a

more detailed description of the parameters of the his event.

Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 Byte_t LMP_Version;

 Word_t Manufacturer_ID;

 Word_t LMP_Subversion;

} GAP_Remote_Version_Information_Event_Data_t;

Fields:

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

BD_ADDR Address of the Bluetooth device for which the event is valid.

LMP_Version LMP version of the remote device.

Manufacturer_ID LMP manufacturer ID of the remote device.

LMP_Subversion LMP subversion of the remote device.

etLE_Remote_Features_Result

This event is dispatched when a remote device features request for a specific LE device

completes (either successfully or with an error). Please see the description for the

meRead_Remote_Used_Features_Complete_Event LE meta event in the HCI section for a

more detailed description of the parameters of the his event.

Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 LE_Features_t LE_ Features;

} GAP_LE_Remote_Features_Event_Data_t;

Fields:

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

Features LE LMP features of the remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 610 of 737 January 10, 2014

etLE_Advertising_Report

This event is dispatched when either an advertising report or a scan response report is

received during a scan procedure. This event will contain all of the parsed report data, as

well as the original, un-parsed data bytes that make up the report itself.

Notes:

This event contains both the raw report data (simple array of bytes), and the parsed report

data. Because the format of scan response data and advertising data is the same, the same

container structure can be used to represent the parsed data. The parsed data is simply an

array of elements that break out each invidual tuple of the data. Each tuple consists of:

 data type

 data length

 data

Structure:

typedef struct

{

 GAP_LE_Advertising_Report_Type_t Advertising_Report_Type;

 GAP_LE_Address_Type_t Address_Type;

 BD_ADDR_t BD_ADDR;

 Byte_t RSSI;

 GAP_LE_Advertising_Data_t Advertising_Data;

 Byte_t Raw_Report_Length;

 Byte_t *Raw_Report_Data;

} GAP_LE_Advertising_Report_Data_t;

Fields:

Advertising_Report_Type Specifies the actual type of report that was received. This value

is one of the following:

rtConnectableUndirected

rtConnectableDirected

rtScannableUndirected

rtNonConnectableUndirected

rtScanResponse

Address_Type Specifies the device address type of the address that the report

was received from.

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

RSSI RSSI value returned for the remote device.

Advertising_Data Parsed report data. This member contains each individual

element of the report accessable by simple array logic. This

member has the following format:

typedef struct

{

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 611 of 737 January 10, 2014

 unsigned int Number_Data_Entries;

 GAP_LE_Advertising_Data_Entry_t *Data_Entries;

} GAP_LE_Advertising_Data_t;

where Data_Entries is a pointer to an array that contains

Number_Data_Entries entries of parsed data. Each element of

the array has the following format and represents an individual

tuple (type, length, data) of the report data:

typedef struct

{

 DWord_t AD_Type;

 Byte_t AD_Data_Length;

 Byte_t *AD_Data_Buffer;

} GAP_LE_Advertising_Data_Entry_t;

Raw_Report_Length Specifies the size (in bytes) of the actual raw report that was

received.

Raw_Report_Data Pointer to a buffer that contains the actual raw report data bytes

that were received. This buffer will be Raw_Report_Length

bytes in length.

etLE_Connection_Complete

This event is dispatched when a remote device is connected to the local device. This can

occur by one of two mechanisms:

 LE device calling the GAP_LE_Create_Connection function

 LE device calling the GAP_LE_Advertising_Enable function (and allowing

connections)

Note that whenever this event is dispatched, if the device was advertising, the advertising

process is stopped. If the connection was established via calling the

GAP_LE_Create_Connection function then the connection process is stopped (this means

that if multiple devices were specified in the white list they will not continued to be have

connection attempts).

Structure:

typedef struct

{

 Byte_t Status;

 Boolean_t Master;

 GAP_LE_Address_Type_t Peer_Address_Type;

 BD_ADDR_t Peer_Address;

 GAP_LE_Current_Connection_Parameters_t Current_Connection_Parameters;

} GAP_LE_Connection_Complete_Event_Data_t;

Fields:

Status Zero if successful or negative of HCI error code if

problem occurred (see HCI error codes in section 2.2)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 612 of 737 January 10, 2014

Master Flag that denotes whether the local device is the master

of the connection.

Peer_Address_Type Denotes the address type of the device that is now

connected. This is one of the following values:

latPublic

latRandom

Peer_Address Remote Bluetooth device address for which this event

is valid for.

Current_Connection_Parameters Structure that contains the connection parameters for

the connection.

etLE_Disconnection_Complete

This event is dispatched when a remote device is disconnected from the local device.

Structure:

typedef struct

{

 Byte_t Status;

 Byte_t Reason;

 GAP_LE_Address_Type_t Peer_Address_Type;

 BD_ADDR_t Peer_Address;

} GAP_LE_Disconnection_Complete_Event_Data_t;

Fields:

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

Reason Disconnection reason (HCI error code - see HCI error codes in

section 2.2)

Peer_Address_Type Denotes the address type of the device that is now disconnected.

This is one of the following values:

latPublic

latRandom

Peer_Address Remote Bluetooth device address for which this event is valid

for.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 613 of 737 January 10, 2014

etLE_Encryption_Change

This event is dispatched when the encryption mode for a specific connected device occurs.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Encryption_Change_Status;

 GAP_Encryption_Mode_t Encryption_Mode;

} GAP_LE_Encryption_Change_Event_Data_t;

Fields:

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

Encryption_Change_Status Status of the encryption change.

Encryption_Mode Denotes the current encryption mode. This is one of the

following values:

 emDisabled

 emEnabled

etLE_Encryption_Refresh_Complete

This event is dispatched when the active encryption for a connected device is refreshed.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Byte_t Status;

} GAP_LE_Encryption_Refresh_Complete_Event_Data_t;

Fields:

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

Status Zero if successful or negative of HCI error code if problem

occurred (see HCI error codes in section 2.2)

etLE_Authentication

This event is dispatched whenever an LE authentication event occurs. The authentication

information itself contains the type of authentication that actually occurred.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 614 of 737 January 10, 2014

Structure:

typedef struct

{

 GAP_LE_Authentication_Event_Type_t GAP_LE_Authentication_Event_Type;

 BD_ADDR_t BD_ADDR;

 union

 {

 GAP_LE_Key_Request_Info_t Long_Term_Key_Request;

 GAP_LE_Pairing_Capabilities_t Pairing_Request;

 GAP_LE_Security_Request_t Security_Request;

 GAP_LE_Confirmation_Request_t Confirmation_Request;

 GAP_LE_Pairing_Status_t Pairing_Status;

 GAP_LE_Encryption_Request_Information_t Encryption_Request_Information;

 GAP_LE_Encryption_Information_t Encryption_Information;

 GAP_LE_Identity_Information_t Identity_Information;

 GAP_LE_Signing_Information_t Signing_Information;

 GAP_LE_Security_Establishment_Complete_t Security_Establishment_Complete;

 } Authentication_Event_Data;

} GAP_LE_Authentication_Event_Data_t;

Fields:

GAP_LE_Authentication_Event_Type Specifies the data member of the struct that is valid.

Possible values and the accompanying data are:

Authentication Event Type Accompanying data

latLongTermKeyRequest Long_Term_Key_Request

latSecurityRequest Security_Request

latPairingRequest Pairing_Request

latConfirmationRequest Confirmation_Request

latPairingStatus Pairing_Status

latEncryptionInformationRequest Encryption_Request_Information

latIdentityInformationRequest No further data

latSigningInformationRequest No further data

latEncryptionInformation Encryption_Information

latIdentityInformation Identity_Information

latSigningInformation Signing_Information

latSecurityEstablishmentComplete Security_Establishment_Complete

BD_ADDR Bluetooth address of the remote device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 615 of 737 January 10, 2014

Long_Term_Key_Request Long term key request information. This structure is

defined as follows:

typedef struct

{

 Random_Number_t Rand;

 Word_t EDIV;

} GAP_LE_Key_Request_Info_t;

where, Rand is the random number, and EDIV is the

encrypted diversifier that should be used to generate the

key.

Pairing_Request Pairing capabilities of the remote device. This structure is

defined as follows:

typedef struct

{

 GAP_LE_IO_Capability_t IO_Capability;

 Boolean_t OOB_Present;

 GAP_LE_Bonding_Type_t Bonding_Type;

 Boolean_t MITM;

 Byte_t Maximum_Encryption_Key_Size;

 GAP_LE_Key_Distribution_t Receiving_Keys;

 GAP_LE_Key_Distribution_t Sending_Keys;

} GAP_LE_Pairing_Capabilities_t;

where, IO_Capability defines the I/O capabilities of the

host. This is one of the following values:

licDisplayOnly

licDisplayYesNo

licKeyboardOnly

licNoInputNoOutput

licKeyboardDisplay

and, OOB_Present is a flag that specifies whether the host

contains out of band (OOB) data.

and, Bonding_type defines the type of bonding being

requested. This is one of the following values:

lbtNoBonding

lbtBonding

and, MITM specifies whether man in the middle (MITM)

protection is requested.

and, Maximum_Encryption_Key_Size specifies the largest

size of the encryption key that is required.

and, Receiving_Keys and Sending_Keys members define

the keys that the host would like to receive or send to the

device (respectively). These structures are defined as

follows:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 616 of 737 January 10, 2014

typedef struct

{

 Boolean_t Encryption_Key;

 Boolean_t Identification_Key;

 Boolean_t Signing_Key;

} GAP_LE_Key_Distribution_t;

where, each member is a flag that specifies whether that

particular key type is requested.

Security_Request Defines the requested security parameters. This structure

has the following format:

typedef struct

{

 GAP_LE_Bonding_Type_t Bonding_Type;

 Boolean_t MITM;

} GAP_LE_Security_Request_t;

where, Bonding_Type defines the requested bonding type.

This value is one of:

lbtNoBonding

lbtBonding

and, MITM is a flag that specifies whether man in the

middle (MITM) protection is required.

Confirmation_Request Specifies the required request type. This structure is

defined as follows:
typedef struct

{

 GAP_LE_Confirmation_Request_Type_t Request_Type;

 DWord_t Display_Passkey;

 Byte_t Negotiated_Encryption_Key_Size;

} GAP_LE_Confirmation_Request_t;

where, Request_Type defines the requested confirmation

type. This value is one of:

crtNone

crtPasskey

crtDisplay

crtOOB

and, Display_Passkey represents the six digit passkey

(000, 000 – 999, 999) to display if the requested

confirmation type is crtDisplay. Note that this member is

valid only if the type is crtDisplay.

and, Negotiated_Encryption_Key_Size represents the

negotiated encryption key size.

Pairing_Status Specifies the pairing status that has occurred. This

structure has the following format:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 617 of 737 January 10, 2014

typedef struct

{

 Boolean_t Remote_Initiated;

 Byte_t Status;

 Byte_t Negotiated_Encryption_Key_Size;

} GAP_LE_Pairing_Status_t;

where, Remote_Initiated is a flag which specifies whether

or not he remote device initiated the pairing.

and, Status represents the pairing status. This is one of the

following values:

GAP_LE_PAIRING_STATUS_NO_ERROR

GAP_LE_PAIRING_STATUS_DISCONNECTED

GAP_LE_PAIRING_STATUS_LOCAL_RESOURCES

GAP_LE_PAIRING_STATUS_PROTOCOL_TIMEOUT

GAP_LE_PAIRING_STATUS_PASSKEY_ENTRY_FAILE

D

GAP_LE_PAIRING_STATUS_OOB_NOT_AVAILABLE

GAP_LE_PAIRING_STATUS_AUTHENTICATION_

REQUIREMENTS

GAP_LE_PAIRING_STATUS_CONFIRM_VALUE_FAILE

D

GAP_LE_PAIRING_STATUS_PAIRING_NOT_SUPPORT

ED

GAP_LE_PAIRING_STATUS_ENCRYPTION_KEY_SIZE

GAP_LE_PAIRING_STATUS_COMMAND_NOT_

SUPPORTED

GAP_LE_PAIRING_STATUS_UNSPECIFIED_REASON

GAP_LE_PAIRING_STATUS_REPEATED_ATTEMPTS

GAP_LE_PAIRING_STATUS_INVALID_PARAMETERS

and, Negotiated_Encryption_Key_Size represents the

negotiated encryption key size.

Encryption_Request_Information Specifies requested encryption information. This structure

is defined as follows:

typedef struct

{

 Byte_t Encryption_Key_Size;

} GAP_LE_Encryption_Request_Information_t;

where, Encrypton_Key_Size represents the encryption key

size of the remote device.

Encryption_Information Specifies the encryption

parameters. This structure is defined as follows:

typedef struct

{

 Byte_t Encryption_Key_Size;

 Long_Term_Key_t LTK;

 Word_t EDIV;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 618 of 737 January 10, 2014

 Random_Number_t Rand;

} GAP_LE_Encryption_Information_t;

where, Encryption_Key_Size represents the encryption

key size (in bytes).

and, LTK represents the long term key.

and, EDIV represents the encrypted diversifier.

and, Rand represents the random number.

Identity_Information Specifies the current identity information. This structure

has the following format:

typedef struct

{

 Encryption_Key_t IRK;

 GAP_LE_Address_Type_t Address_Type;

 BD_ADDR_t Address;

} GAP_LE_Identity_Information_t;

where, IRK represents the identity resolving key.

and, Address_Type specifies the address type of the

remote device. This is one of the following values:

latPublic

latRandom

and, Address specifies the address of the remote device.

Signing_Information Specifies the device signing information. This structure

has the following format:

typedef struct

{

 Encryption_Key_t CSRK;

} GAP_LE_Signing_Information_t;

Security_Establishment_Complete Specifies that the security process has completed. This

structure has the following format:
typedef struct

{

 Byte_t Status;

} GAP_LE_Security_Establishment_Complete_t;

where, Status defines the status of the completed security

process. This is one of the following values:

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_NO_ERROR

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_LONG_TERM_KEY_ERROR

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_EDIV_RAND_INVALID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 619 of 737 January 10, 2014

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_DEVICE_TRIED_TO_REPAIR

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_LINK_DISCONNECTED

GAP_LE_SECURITY_ESTABLISHMENT_STATUS_

CODE_TIMEOUT

etLE_Connection_Parameter_Update_Request

This event is dispatched when the remote slave device is requesting a connection

parameter update. This event is only dispatched to the master device (of the connection)

because the master of the connection is the only device that can change the connection

parameters.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Word_t Conn_Interval_Min;

 Word_t Conn_Interval_Max;

 Word_t Slave_Latency;

 Word_t Conn_Supervision_Timeout;

} GAP_LE_Connection_Parameter_Update_Request_Event_Data_t;

Fields:

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

Conn_Interval_Min Minimum value for the the connection interval (in milli-

seconds). This should fall within the range:

MINIMUM_MINIMUM_CONNECTION_INTERVAL

MAXIMUM_MINIMUM_CONNECTION_INTERVAL

Conn_Interval_Max This should be greater than or equal to Conn_Interval_Min.

This value is also specified in milli-seconds and shall fall within

the range:

MINIMUM_MAXIMUM_CONNECTION_INTERVAL

MAXIMUM_MAXIMUM_CONNECTION_INTERVAL

Slave_Latency Slave latency for connection. This value is specified in number

of connection events and should be in range:

MINIMUM_SLAVE_LATENCY

MAXIMUM_SLAVE_LATENCY

The default slave latency is specified by the constant:

DEFAULT_SLAVE_LATENCY

Conn_Supervision_Timeout Supervision timeout for LE link. This value is in milli-seconds

and should be in range:

MINIMUM_LINK_SUPERVISION_TIMEOUT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 620 of 737 January 10, 2014

MAXIMUM_LINK_SUPERVISION_TIMEOUT

The default supervision timeout is specified by the constant:

DEFAULT_LINK_SUPERVISION_TIMEOUT

etLE_Connection_Parameter_Update_Response

This event is dispatched when the remote master device has processed a connection

parameter update request (issued by the slave device). This event is only dispatched to the

slave device (of the connection) because the master of the connection is the only device

that can change the connection parameters.

Structure:

typedef struct

{

 BD_ADDR_t BD_ADDR;

 Boolean_t Accepted;

} GAP_LE_Connection_Parameter_Update_Response_Event_Data_t;

Fields:

BD_ADDR Remote Bluetooth device address for which this event is valid

for.

Accepted Boolean value that specifies whether or not the master accepted

(and applied) the requested connection parameter updates.

etLE_Connection_Parameter_Updated

This event is dispatched when the connection parameters for a connection have been

updated. This event is dispatched to both the master and the slave device of the

connection.

Structure:

typedef struct

{

 Byte_t Status;

 BD_ADDR_t BD_ADDR;

 GAP_LE_Current_Connection_Parameters_t Current_Connection_Parameters;

} GAP_LE_Connection_Parameter_Updated_Event_Data_t;

Fields:

Status Contains the status of the connection parameter update.

BD_ADDR Remote Bluetooth device address for which this event is

valid for.

Current_Connection_Parameters Structure that contains the new connection parameters

for the connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 621 of 737 January 10, 2014

3.2 SPP Programming Interface

The SPP (Serial Port Profile) programming interface provides all features required for serial port

emulation utilizing the RFCOMM protocol. Section 3.2.1 lists the SPP function calls. Section

3.2.2 lists the SPP event callback prototypes. Section 3.2.3 lists all supported SPP events. The

actual prototypes and constants outlined in this section can be found in the SPPAPI.H header file

in the Bluetopia distribution.

3.2.1 SPP Commands

The available SPP command functions are listed in the table below and are described in the text

which follows.

Function Description

SPP_Open_Server_Port Establish server port to wait for connections

SPP_Close_Server_Port Close an open port

SPP_Open_Port_Request_Response Respond to a port open request from the remote

device.

SPP_Register_SDP_Record Add a generic SDP Service Record to the SDP

database

SPP_Register_Raw_SDP_Record Add a generic SDP Service Record to the SDP

database with only pre-parsed attribute data possibly

added to the protocol data.

SPP_Open_Remote_Port Open a serial port to a remote device.

SPP_Close_Port Close either a server port or a remote port.

SPP_Data_Read Read data from a serial connection.

SPP_Data_Write Send data on a serial connection.

SPP_Change_Buffer_Size Change the default transmit/receive buffer sizes.

SPP_Purge_Buffer Drop all data in an input/output buffer.

SPP_Send_Break Notify the remote device of a break condition.

SPP_Line_Status Send current line status to the remote side.

SPP_Port_Status Send current modem/port control signals to the

remote side.

SPP_Send_Port_Information Send port parameters to be used to the remote side.

SPP_Respond_Port_Information Respond to a send port information command from

the remote side.

SPP_Query_Remote_Port_Information Request current port parameters from the remote side.

SPP_Respond_Query_Port_Information Reply to a request for current port parameters.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 622 of 737 January 10, 2014

SPP_Get_Configuration_Parameters Query RFCOMM frame size and default buffer sizes.

SPP_Set_Configuration_Parameters Change RFCOMM frame size and default buffer

sizes.

SPP_Get_Server_Connection_Mode Query the current server connection mode.

SPP_Set_Server_Connection_Mode Change the current server connection mode.

SPP_Get_Port_Connection_State Query the current state of a specific SPP Port

connection.

SPP_Set_Queuing_Parameters Change the current lower level queuing parameters.

SPP_Get_Queuing_Parameters Query the current lower level queuing parameters.

SPP_Query_Server_Present Determine if there is currently a registered Serial Port

Profile Server Port for a specific RFCOMM Server

Port.

SPP_Open_Server_Port

This function is responsible for establishing a Serial Port Server which will wait for a

connection to occur on the port established by this function.

Prototype:

int BTPSAPI SPP_Open_Server_Port(unsigned int BluetoothStackID,

unsigned int ServerPort, SPP_Event_Callback_t SPP_Event_Callback,

unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerPort Port number to use. This must fall in the range defined by the

following constants:

SPP_PORT_NUMBER_MINIMUM

SPP_PORT_NUMBER_MAXIMUM

SPP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the SerialPortID for the server

port that was successfully opened. This is the value that should be used in all subsequent

function calls (except another SPP_Open_Server_Port() call).

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 623 of 737 January 10, 2014

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Open_Request_Indication

etPort_Open_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Close_Server_Port

This function is responsible for Unregistering a Serial Port Server which was registered by

a successful call to the SPP_Open_Server_Port() function. Note, this function does NOT

delete any SDP Service Record Handles (i.e., added via a SPP_Register_SDP_Record()

function call).

Prototype:

int BTPSAPI SPP_Close_Server_Port(unsigned int BluetoothStackID,

unsigned int SerialPortID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port to close. This is the value that was returned from the

SPP_Open_Server_Port() function.

Return:

 Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 624 of 737 January 10, 2014

SPP_Open_Port_Request_Response

This function is responsible for responding to requests to connect to a Serial Port Server.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Prototype:

int BTPSAPI SPP_Open_Port_Request_Response(unsigned int BluetoothStackID,

unsigned int SerialPortID, Boolean_t AcceptConnection)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() function.

AcceptConnection Boolean indicating if the pending connection should be

accepted.

Return:

 Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

etPort_Open_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Register_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database.

Notes:

1. This function should only be called with the SerialPortID that was returned from the

SPP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the SPP_Open_Remote_Port() function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 625 of 737 January 10, 2014

2. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps SPP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is defined

as follows:

SPP_Un_Register_SDP_Record(__BluetoothStackID, __SerialPortID, __SDPRecordHandle)

3. If no UUID information is specified in the SDPServiceRecord Parameter, then the

default SPP Service Class's are added. Any Protocol Information that is specified (if

any) will be added in the Protocol Attribute after the default SPP Protocol List

(L2CAP and RFCOMM).

4. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI SPP_Register_SDP_Record(unsigned int BluetoothStackID,

unsigned int SerialPortID, SPP_SDP_Service_Record_t *SDPServiceRecord,

char *ServiceName, DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() function.

SDPServiceRecord Any additional Service Discovery Protocol information to be

added to the record for this serial port server. This is a

structured defined as:

typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 SDP_Data_Element_t *ProtocolList;

} SPP_SDP_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 626 of 737 January 10, 2014

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Register_Raw_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database. The only difference with the SPP_Register_SDP_Record() API is that any

additional protocol information to add to the SDP record must be in pre-parsed format.

Notes:

1. This function should only be called with the SerialPortID that was returned from the

SPP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the SPP_Open_Remote_Port() function.

2. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps SPP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is defined

as follows:

SPP_Un_Register_SDP_Record(__BluetoothStackID, __SerialPortID, __SDPRecordHandle)

3. If no UUID information is specified in the SDPServiceRecord Parameter, then the

default SPP Service Class's are added. Any Protocol Information that is specified (if

any) will be added in the Protocol Attribute after the default SPP Protocol List

(L2CAP and RFCOMM).

4. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI SPP_Register_Raw_SDP_Record(unsigned int BluetoothStackID,

unsigned int SerialPortID,

SPP_SDP_Raw_Service_Record_t *SDPServiceRecord,

char *ServiceName,

DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 627 of 737 January 10, 2014

SDPServiceRecord Any additional Service Discovery Protocol information to be

added to the record for this serial port server. This is a

structured defined as:
typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 unsigned int NumberOfProtocolDataListUUIDOffsets;

 Word_t *ProtocolDataListUUIDOffsets;

 unsigned int ProtocolDataListLength;

 Byte_t *ProtocolDataList;

} SPP_SDP_Raw_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Open_Remote_Port

This function is used to open a remote serial port on the specified Remote Device.

Prototype:

int BTPSAPI SPP_Open_Remote_Port(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, unsigned int ServerPort,

SPP_Event_Callback_t SPP_Event_Callback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device to connect with.

ServerPort The remote device’s server port ID to connect with.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 628 of 737 January 10, 2014

SPP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the SerialPortID for the port that

was successfully opened. This is the value that should be used in all subsequent function

calls.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

RFCOMM_UNABLE_TO_CONNECT_TO_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

Possible Events:
etPort_Open_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Close_Port

This function is used to close a Serial Port that was previously opened with the

SPP_Open_Server_Port() function or the SPP_Open_Remote_Port() function. This

function does not unregister a SPP Server Port from the system, it only disconnects any

connection that is currently active on the Server Port. The SPP_Close_Server_Port()

function can be used to Unregister the SPP Server Port.

Prototype:

int BTPSAPI SPP_Close_Port(unsigned int BluetoothStackID, unsigned int SerialPortID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port to close. This is the value that was returned from the

SPP_Open_Server_Port() or SPP_Open_Remote_Port()

function.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 629 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Data_Read

This function is used to read serial data from the specified serial connection. The

SerialPortID that is passed to this function must have been established by either accepting

a Serial Port Connection (callback from the SPP_Open_Server_Port() function) or by

initiating a Serial Port Connection (via calling the SPP_Open_Remote_Port() function and

having the remote side accept the connection).

Prototype:

int BTPSAPI SPP_Data_Read(unsigned int BluetoothStackID, unsigned int SerialPortID,

Word_t DataBufferSize, Byte_t *DataBuffer)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

DataBufferSize The size of the data buffer to be used for reading

DataBuffer The data buffer that may be used to hold the read data

Return:

Positive or Zero if successful. Indicates the number of data bytes actually read in (zero if

no data is available at the time of the call).

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 630 of 737 January 10, 2014

etClose_Port_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Data_Write

This function is used to send data to the specified Serial Connection. The SerialPortID

that is passed to this function must have been established by either accepting a Serial Port

Connection (callback from the SPP_Open_Server_Port() function) or by initiating a Serial

Port Connection (via calling the SPP_Open_Remote_Port() function and having the

remote side accept the connection).

Note: If this function is unable to send all of the data that was specified (via the

DataLength parameter) because of a full Transmit Buffer condition, this function will

return the number of bytes that were actually sent (zero or more, but less than the

DataLength parameter value). When this happens (and only when this happens), the user

can expect to be notified when the Serial Port is able to send data again via the the

etPort_Transmit_Buffer_Empty_Indication SPP Event. This will allow the user a

mechanism to know when the Transmit Buffer is empty so that more data can be sent.

Prototype:

int BTPSAPI SPP_Data_Write(unsigned int BluetoothStackID, unsigned int SerialPortID,

Word_t DataLength, Byte_t *DataBuffer)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

DataLength The number of data bytes to send

DataBuffer The data buffer that contains the data to send

Return:

Positive or zero if successful indicating the number of data bytes actually sent. See note

above, for situations when this value is less than DataLength.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 631 of 737 January 10, 2014

Possible Events:

etClose_Port_Indication

etPort_Transmit_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Change_Buffer_Size

This function is provided to allow the programmer a means to change the default transmit

and receive buffer sizes. Note, this function causes ALL data in each buffer to be lost.

This function clears each data buffer so that all the available data buffer is available to be

used.

Prototype:

 int BTPSAPI SPP_Change_Buffer_Size(unsigned int BluetoothStackID,

unsigned int SerialPortID, unsigned int ReceiveBufferSize,

unsigned int TransmitBufferSize)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

ReceiveBufferSize Size of the receive buffer.

TransmitBufferSize Size of the transmit buffer.

Some handy constants that relate to buffer sizes are:

SPP_BUFFER_SIZE_MINIMUM

SPP_BUFFER_SIZE_MAXIMUM

SPP_BUFFER_SIZE_DEFAULT

SPP_BUFFER_SIZE_CURRENT

Where SPP_BUFFER_SIZE_CURRENT means to keep the

indicated buffer at its current size.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 632 of 737 January 10, 2014

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Purge_Buffer

This function allows the programmer a mechanism for either aborting (dropping) all data

present in either an input or an output buffer, or a means to wait until all data present in

the output buffer has been transmitted.

Prototype:

int BTPSAPI SPP_Purge_Buffer(unsigned int BluetoothStackID, unsigned int SerialPortID,

unsigned int PurgeBufferMask)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

PurgeBufferMask Operation indicator, defined by the following bit mask values:

SPP_PURGE_MASK_TRANSMIT_ABORT_BIT

SPP_PURGE_MASK_RECEIVE_ABORT_BIT

SPP_PURGE_MASK_TRANSMIT_FLUSH_BIT

 It should be noted that the

SPP_PURGE_MASK_TRANSMIT_ABORT_BIT and the

SPP_PURGE_MASK_TRANSMIT_FLUSH_BIT mask values

can not be specified concurrently (i.e. they are mutually

exclusive). If the flush is requested and this function returns

BTPS_ERROR_SPP_BUFFER_EMPTY then a SPP Event

Callback will not be issued because there is no data currently

queued. Otherwise, if this function returns zero (success) and a

flush is requested then the SPP Event Callback will be issued

when the transmit buffer is empty.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 633 of 737 January 10, 2014

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

BTPS_ERROR_SPP_BUFFER_EMPTY

Possible Events:

etPort_Transmit_Buffer_Empty_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Send_Break

This function allows the programmer a means to notify the remote side of the serial

connection of a break condition.

Prototype:

int BTPSAPI SPP_Send_Break(unsigned int BluetoothStackID, unsigned int SerialPortID,

unsigned int BreakTimeout)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

BreakTimeout Length of the break detected in milliseconds. The following

three constants are defined that relate to this parameter:

SPP_BREAK_SIGNAL_DETECTED

SPP_BREAK_SIGNAL_MINIMUM

SPP_BREAK_SIGNAL_MAXIMUM

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etClose_Port_Indication

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 634 of 737 January 10, 2014

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Line_Status

This function provides a means to send the existing state of the Line Status to the remote

side.

Prototype:

int BTPSAPI SPP_Line_Status(unsigned int BluetoothStackID, unsigned int SerialPortID,

unsigned int SPPLineStatusMask)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

SPPLineStatusMask Status to send. Built up from the following bit mask values:

SPP_LINE_STATUS_OVERRUN_ERROR_BIT_MASK

SPP_LINE_STATUS_PARITY_ERROR_BIT_MASK

SPP_LINE_STATUS_FRAMING_ERROR_BIT_MASK

Or one may send the following value:

SPP_LINE_STATUS_NO_ERROR_VALUE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 635 of 737 January 10, 2014

SPP_Port_Status

This function is used to send the existing state of all modem/port control signals to the

remote side.

Prototype:

int BTPSAPI SPP_Port_Status(unsigned int BluetoothStackID, unsigned int SerialPortID,

unsigned int PortStatus)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

PortStatus Port status bits. Value is built up from the following constants:

SPP_PORT_STATUS_RTS_CTS_BIT

SPP_PORT_STATUS_DTR_DSR_BIT

SPP_PORT_STATUS_RING_INDICATOR_BIT

SPP_PORT_STATUS_CARRIER_DETECT_BIT

Or the status may be cleared with the following constant:

SPP_PORT_STATUS_CLEAR_VALUE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Send_Port_Information

This function provides a means to inform the remote side of the serial port parameters that

are to be used.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 636 of 737 January 10, 2014

Prototype:

 int BTPSAPI SPP_Send_Port_Information(unsigned int BluetoothStackID,

unsigned int SerialPortID, SPP_Port_Information_t *SPPPortInformation)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

SPPPortInformation The port parameters to be passed to the remote side, defined by

the following structure:

typedef struct

{

 unsigned int PortInformationMask;

 unsigned int BaudRate;

 unsigned int DataBits;

 SPP_Stop_Bits_t StopBits;

 SPP_Parity_t Parity;

 Byte_t XOnCharacter;

 Byte_t XOffCharacter;

 unsigned int FlowControlMask;

} SPP_Port_Information_t;

where PortInformationMask defines which of the port

parameters are set, defined by the following bit mask values:

SPP_PORT_INFORMATION_BAUD_RATE_BIT

SPP_PORT_INFORMATION_DATA_BITS_BIT

SPP_PORT_INFORMATION_STOP_BITS_BIT

SPP_PORT_INFORMATION_PARITY_BIT

SPP_PORT_INFORMATION_XON_CHARACTER_BIT

SPP_PORT_INFORMATION_XOFF_CHARACTER_BIT

SPP_PORT_INFORMATION_FLOW_CONTROL_BIT

Or it may be set to the following constant:

SPP_PORT_INFORMATION_NONE_VALUE

BaudRate can be one of the following values:

SPP_BAUD_RATE_MINIMUM

SPP_BAUD_RATE_MAXIMUM

SPP_BAUD_RATE_2400

SPP_BAUD_RATE_4800

SPP_BAUD_RATE_7200

SPP_BAUD_RATE_9600

SPP_BAUD_RATE_19200

SPP_BAUD_RATE_38400

SPP_BAUD_RATE_57600

SPP_BAUD_RATE_115200

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 637 of 737 January 10, 2014

SPP_BAUD_RATE_230400

DataBits can be one of the following values:

SPP_DATA_BITS_MINIMUM

SPP_DATA_BITS_MAXIMUM

SPP_DATA_BITS_5

SPP_DATA_BITS_6

SPP_DATA_BITS_7

SPP_DATA_BITS_8

StopBits can be one of the following values:

sbOneStopBit

sbOneOneHalfStopBit

Parity can be one of the following values:

ptNone

ptOdd

ptEven

ptMark

ptSpace

XOnCharacter and XoffCharacter may be any character.

However, the following constants are defined in RFCOMM and

may be useful for these:

RFCOMM_RPN_PARAMETER_DEFAULT_XON_CHARACTER

RFCOMM_RPN_PARAMETER_DEFAULT_XOFF_CHARACTER

FlowControlMask is built up from the following bit mask

values:

SPP_FLOW_CONTROL_XON_XOFF_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_XON_XOFF_OUTPUT_ENABLED_BIT

SPP_FLOW_CONTROL_CTS_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_RTS_OUTPUT_ENABLED_BIT

SPP_FLOW_CONTROL_DSR_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_DTR_OUTPUT_ENABLED_BIT

or may be set to the following value:

SPP_FLOW_CONTROL_DISABLED_VALUE

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 638 of 737 January 10, 2014

etPort_Send_Port_Information_Confirmation

etPort_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Respond_Port_Information

This function provides a means to respond to a Serial Port Parameters Indication from the

remote side.

Prototype:

int BTPSAPI SPP_Respond_Port_Information(unsigned int BluetoothStackID,

unsigned int SerialPortID, SPP_Port_Information_t *SPPPortInformation)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

SPPPortInformation Acceptable port information. See description of this structure

above in the SPP_Send_Port_Information() function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 639 of 737 January 10, 2014

SPP_Query_Remote_Port_Information

This function provides a means to query the existing Serial Port Parameters from the

remote side

Prototype:

int BTPSAPI SPP_Query_Remote_Port_Information(unsigned int BluetoothStackID,

unsigned int SerialPortID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Query_Port_Information_Confirmation

etClose_Port_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Respond_Query_Port_Information

This function is used to respond to the etPort_Query_Port_Information_Indication event.

Prototype:

int BTPSAPI SPP_Respond_Query_Port_Information(unsigned int BluetoothStackID,

unsigned int SerialPortID, SPP_Port_Information_t *SPPPortInformation)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 640 of 737 January 10, 2014

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() or

SPP_Open_Remote_Port() function.

SPPPortInformation Current port information. See description of this structure

above in the SPP_Send_Port_Information() function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_SPP_PORT_NOT_OPENED

Possible Events:

etPort_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Get_Configuration_Parameters

This function is used to determine the current SPP parameters that are being used. These

parameters are the RFCOMM Frame size that is to be used for incoming/outgoing

connections and the size (in bytes) of the default transmit and receive buffers that are used.

The transmit and receive buffer sizes are the sizes that are used by default for newly

opened SPP Ports (either client or server). The programmer is free to use the

SPP_Change_Buffer_Size() function to change the transmit and receive buffer sizes for an

existing SPP Port (either client or server).

Prototype:

int BTPSAPI SPP_Get_Configuration_Parameters(unsigned int BluetoothStackID,

SPP_Configuration_Params_t *SPPConfigurationParams)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SPPConfigurationParams Pointer to a structure to receive the configuration information.

typedef struct

{

 Word_t MaximumFrameSize;

 unsigned int TransmitBufferSize;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 641 of 737 January 10, 2014

 unsigned int ReceiveBufferSize;

} SPP_Configuration_Params_t;

where, the MaximumFrameSize is between:

SPP_FRAME_SIZE_MINIMUM

SPP_FRAME_SIZE_MAXIMUM

And TransmitBufferSize and ReceiveBufferSize is between:

SPP_BUFFER_SIZE_MINIMUM

SPP_BUFFER_SIZE_MAXIMUM

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Set_Configuration_Parameters

This function is used to change the current SPP parameters that are to be used for future

SPP Ports that are opened. These parameters are the RFCOMM Frame size that is to be

used for incoming/outgoing connections and the size (in bytes) of the default transmit and

receive buffers that are used. The transmit and receive buffer sizes are the sizes that are

used by default for newly opened SPP Ports (either client or server). The programmer is

free to use the SPP_Change_Buffer_Size() function to change the transmit and receive

buffer sizes for an existing SPP Port (either client or server). This function cannot be

called if there exists ANY active SPP Client of Server. In other words, these parameters

can only changed when there are no active SPP Server Ports or SPP Client Ports open.

Note that for all of the parameters there exists special constants which indicate to use the

currently configured parameters.

Prototype:

int BTPSAPI SPP_Set_Configuration_Parameters(unsigned int BluetoothStackID,

SPP_Configuration_Params_t *SPPConfigurationParams)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 642 of 737 January 10, 2014

SPPConfigurationParams Pointer to a structure that contains the new configuration

information.

typedef struct

{

 Word_t MaximumFrameSize;

 unsigned int TransmitBufferSize;

 unsigned int ReceiveBufferSize;

} SPP_Configuration_Params_t;

where, the MaximumFrameSize is between:

SPP_FRAME_SIZE_MINIMUM

SPP_FRAME_SIZE_MAXIMUM or
SPP_FRAME_SIZE_CURRENT

And TransmitBufferSize and ReceiveBufferSize is between:

SPP_BUFFER_SIZE_MINIMUM

SPP_BUFFER_SIZE_MAXIMUM or
SPP_BUFFER_SIZE_CURRENT

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SPP_Get_Server_Connection_Mode

This function is responsible for allowing a mechanism to query the SPP Server

Connection Mode.

Prototype:

int BTPSAPI SPP_Get_Server_Connection_Mode(unsigned int BluetoothStackID,

unsigned int SerialPortID, SPP_Server_Connection_Mode_t

*SPPServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 643 of 737 January 10, 2014

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() function.

SPPServerConnectionMode Pointer to a variable to receive the current Server Connection

Mode. The following modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Set_Server_Connection_Mode

This function is responsible for allowing a mechanism to change the SPP Server

Connection Mode.

Prototype:

int BTPSAPI SPP_Set_Server_Connection_Mode(unsigned int BluetoothStackID, unsigned

int SerialPortID, SPP_Server_Connection_Mode_t SPPServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SerialPortID The port this command applies to. This is the value that was

returned from the SPP_Open_Server_Port() function.

SPPServerConnectionMode The new Server Connection Mode being set. The following

modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 644 of 737 January 10, 2014

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SPP_Get_Port_Connection_State

This function is used to determine the current status of a specific SPP Port/RFCOMM

Channel for a specific Bluetooth device connection. This function is useful to determine

when a RFCOMM Channel has been completely disconnected, as well as to determine

when there is an outstanding message on a specific SPP Port/RFCOMM Channel (to aid

with new connections).

Prototype:

int BTPSAPI SPP_Get_Port_Connection_State(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t Channel, Boolean_t LocalPort,

SPP_Port_Connection_State_t *SPP_Port_Connection_State)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Bluetooth device address of the remote Bluetooth device

connection that the specified Server Channel is to be queried.

ServerPort The SPP Port number of the port to query the status of. This

value must be either:

0 (to determine if a connection is possible)

or be a value between the following constants:

SPP_PORT_NUMBER_MINIMUM

SPP_PORT_NUMBER_MAXIMUM

Note that this value is NOT a SPP Port ID (returned from any of

the SPP Open functions).

LocalPort Flag which specifies whether or not the SPP Port in question is

a local SPP Server (TRUE) or a remote SPP Port connection

(FALSE). Note that in either case, the Bluetooth address

MUST specify the remotely connected Bluetooth device.

SPP_Port_Connection_State Pointer to a variable that is to receive the current status for the

specified Port. This value returned will be of the following

values:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 645 of 737 January 10, 2014

csPortNotPresent

csPortBusy

csPortDisconnecting

csPortReady

Return:

Zero if successful. Note that the SPP_Port_Connection_State variable will only contain a

valid value if this function returns success, otherwise the variable will contain an unknown

value.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

2. 1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SPP_Set_Queuing_Parameters

This function is responsible for setting the lower level data queing parameters. These

parameters are used to control the lower level data packet queing thresholds (to improve

RAM usage). Specifically, these parameters are used to control aspects of the number of

data packets that can be queued into the lower level (per individual channel). This

mechanism allows for the flexibility to limit the amount of RAM that is used for streaming

type applications (where the remote side has a large number of credits that were granted).

Notes:

This function can only be called when there are NO active connections.

Setting both parameters to zero will disable the queuing mechanism. This means that the

number of queued packets will only be limited via the amount of available RAM.

These parameters do not affect the transmit and receive buffers and do not affect any

frame sizes and/or credit logic. These parameters ONLY affect the number of

simultaneous data packets queued into the lower level.

Prototype:

int BTPSAPI SPP_Set_ Queuing_Parameters(unsigned int BluetoothStackID, unsigned int

MaximumNumberDataPackets, unsigned int QueuedDataPacketsThreshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 646 of 737 January 10, 2014

MaximumNumberDataPackets The maximum number of data packets that can be queued

into the lower layer simultaneously.

QueuedDataPacketsThreshold The lower threshold limit that the lower layer should call

back to signify that it can queue more data packets for

transmission.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

SPP_Get_Queuing_Parameters

This function is responsible for querying the lower level data queing parameters. These

parameters are used to control the lower level data packet queing thresholds (to improve

RAM usage). Specifically, these parameters are used to control aspects of the number of

data packets that can be queued into the lower level (per individual channel). This

mechanism allows for the flexibility to limit the amount of RAM that is used for streaming

type applications (where the remote side has a large number of credits that were granted).

Notes:

If both parameters are zero the the queuing mechanism is disabled. This means that the

number of queued packets will only be limited via the amount of available RAM.

These parameters do not affect the transmit and receive buffers and do not affect any

frame sizes and/or credit logic. These parameters ONLY affect the number of

simultaneous data packets queued into the lower level.

Prototype:

int BTPSAPI SPP_Get_Queuing_Parameters(unsigned int BluetoothStackID,

unsigned int *MaximumNumberDataPackets,

unsigned int *QueuedDataPacketsThreshold)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack

via a call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 647 of 737 January 10, 2014

MaximumNumberDataPackets Buffer that will contain the maximum number of data

packets that can be queued into the lower layer

simultaneously (if successful).

QueuedDataPacketsThreshold Buffer that will contain the lower threshold limit that the

lower layer should call back to signify that it can queue

more data packets for transmission (if successful).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have

been optimized to only control a single Bluetooth device, such as some embedded

versions of Bluetopia. Please refer to the appropriate header file to determine if this

parameter is part of the function call or not.

SPP_Query_Server_Present

This function is responsible for determining if a Serial Port Profile server has been

registered (via a successful call to the SPP_Open_Server_Port() function) for the specified

RFCOMM server port.

Prototype:

int BTPSAPI SPP_Query_Server_Present(unsigned int BluetoothStackID,

Byte_t ServerPort, Boolean_t *ServerPresent)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerPort The SPP Port number of the port to query the existence of. This

value must be a value between the following constants:

SPP_PORT_NUMBER_MINIMUM

SPP_PORT_NUMBER_MAXIMUM

Note that this value is NOT a SPP Port ID (returned from any of

the SPP Open functions).

ServerPresent Buffer which will hold the Boolean return value which specifies

whether a server is present (TRUE) or is not present (FALSE)

for the specified Server Channel.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 648 of 737 January 10, 2014

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_SPP_NOT_INITIALIZED

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.2.2 SPP Event Callback Protoype

The event callback functions mentioned in the SPP commands all accept the callback function

described by the following prototype.

SPP_Event_Callback_t

Prototype of callback function passed in one of the SPP open commands.

Prototype:

void (BTPSAPI *SPP_Event_Callback_t)(unsigned int BluetoothStackID,

SPP_Event_Data_t *SPP_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

SPP_Event_Data Data describing the event for which the callback function is

called. This is defined by the following struture:

typedef struct

{

 SPP_Event_Type_t Event_Data_Type;

 Word_t Event_Data_Size;

 union

 {

 SPP_Open_Port_Indication_Data_t

*SPP_Open_Port_Indication_Data;

 SPP_Open_Port_Confirmation_Data_t

*SPP_Open_Port_Confirmation_Data;

 SPP_Close_Port_Indication_Data_t

*SPP_Close_Port_Indication_Data;

 SPP_Port_Status_Indication_Data_t

*SPP_Port_Status_Indication_Data;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 649 of 737 January 10, 2014

 SPP_Data_Indication_Data_t

*SPP_Data_Indication_Data;

 SPP_ Transmit_Buffer_Empty_Indication_Data_t

 *SPP_ Transmit_Buffer_Empty_Indication_Data;

 SPP_Line_Status_Indication_Data_t

*SPP_Line_Status_Indication_Data;

 SPP_Send_Port_Information_Indication_Data_t

*SPP_Send_Port_Information_Indication_Data;

 SPP_Send_Port_Information_Confirmation_Data_t

*SPP_Send_Port_Information_Confirmation_Data;

 SPP_Query_Port_Information_Indication_Data_t

*SPP_Query_Port_Information_Indication_Data;

 SPP_Query_Port_Information_Confirmation_Data_t

*SPP_Query_Port_Information_Confirmation_Data;

 SPP_Open_Port_Request_Indication_Data_t

*SPP_Open_Port_Request_Indication_Data;

 } Event_Data;

} SPP_Event_Data_t;

where, Event_Data_Type one of the enumerations of the event

types listed in the table in section 3.2.3, and each data structure

in the union is described with its event in that section as well.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.2.3 SPP Events

The possible SPP events from the Bluetooth stack are listed in the table below and are described

in the text which follows:

Event Description

etPort_Open_Indication Indicate that a Remote Port Open connection

has been made.

etPort_Open_Confirmation Confirm that a Port Open request has been

responded to or errored out.

etPort_Close_Port_Indication Indicate that a port has been closed

(unregistered).

etPort_Status_Indication Indicate that a change in port status has been

received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 650 of 737 January 10, 2014

etPort_Data_Indication Indicate that data has arrived on a port.

etPort_Transmit_Buffer_Empty_Indication Indicate when the Transmit Buffer is Empty

(only if the Transmit Buffer was completely

full or the SPP_Purge_Buffer() function was

called with the option to flush the transmit

buffer).

etPort_Line_Status_Indication Indicate that a change in line status has been

received.

etPort_Send_Port_Information_Indication Indicate that a remote device’s port parameters

have been received (start of negotiation of

parameters).

etPort_Send_Port_Information_Confirmation Confirm that a response has been received to a

send port parameters command.

etPort_Query_Port_Information_Indication Indicate that a request to send current port

parameters has been received.

etPort_Query_Port_Information_Confirmation Confirm that a response has been received to a

request to send current port parameters.

etPort_Open_Request_Indication Indicate that a Remote Port Open request has

been received.

etPort_Open_Indication

Indicate that a Remote Port Open connection has been made.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 BD_ADDR_t BD_ADDR;

} SPP_Open_Port_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

BD_ADDR Address of the Bluetooth device.

etPort_Open_Confirmation

Confirm that a Port Open request has been responded to or errorred out.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 651 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 unsigned int PortOpenStatus;

} SPP_Open_Port_Confirmation_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

PortOpenStatus Status of the open request, one of the following values:

SPP_OPEN_PORT_STATUS_SUCCESS

SPP_OPEN_PORT_STATUS_CONNECTION_TIMEOUT

SPP_OPEN_PORT_STATUS_CONNECTION_REFUSED

SPP_OPEN_PORT_STATUS_UNKNOWN_ERROR

etPort_Close_Port_Indication

Indicate that a port has been closed (unregistered).

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

} SPP_Close_Port_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

etPort_Status_Indication

Indicate that a change in port status has been received.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 unsigned int PortStatus;

 SPP_Break_Status_t BreakStatus;

 unsigned int BreakTimeout;

} SPP_Port_Status_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

PortStatus The current status of the port sent from the remote side; a bit

mask that may contain one or more of the following bits:

SPP_PORT_STATUS_RTS_CTS_BIT

SPP_PORT_STATUS_DTR_DSR_BIT

SPP_PORT_STATUS_RING_INDICATOR_BIT

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 652 of 737 January 10, 2014

SPP_PORT_STATUS_CARRIER_DETECT_BIT

BreakStatus One of the following values:

bsBreakCleared

bsBreakReceived

BreakTimeout Value of the Break Timeout, in seconds, if BreakStatus is set to

bsBreakReceived.

etPort_Data_Indication

Indicate that data has arrived on a port. Call SPP_Data_Read() to retrieve.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 Word_t DataLength;

} SPP_Data_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

DataLength Length of the data which is waiting to be read.

et Port_Transmit_Buffer_Empty_Indication

Indicate when the Transmit Buffer is Empty (only if the Transmit Buffer was completely

full or the SPP_Purge_Buffer() function was called with the option to flush the transmit

buffer). This Event is ONLY dispatched when one of two conditions exist:

 The Transmit Buffer has been filled to capacity. This condition can be determined

by checking the return value from the SPP_Data_Write() function. When

SPP_Data_Write() returns a value greater than or equal to zero AND less than the

number of bytes that were requested to be transmitted, the Transmit Buffer is

considered full. No more data can be sent through the Serial Port until this event is

received (for the specified Port).

 The SPP_Purge_Buffer() function was called and

SPP_PURGE_MASK_TRANSMIT_FLUSH_BIT was specified. If this bit was

specified and the SPP_Purge_Buffer() function returned zero (success) then this

event will be generated when the transmit buffer is empty.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

} SPP_Transmit_Buffer_Empty_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 653 of 737 January 10, 2014

etPort_Line_Status_Indication

Indicate that a change in line status has been received.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 unsigned int SPPLineStatusMask;

} SPP_Line_Status_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

SPPLineStatusMask Status bits, which may contain one or more of the following bit

mask values:

SPP_LINE_STATUS_OVERRUN_ERROR_BIT_MASK

SPP_LINE_STATUS_PARITY_ERROR_BIT_MASK

SPP_LINE_STATUS_FRAMING_ERROR_BIT_MASK

Or one may the following value:

SPP_LINE_STATUS_NO_ERROR_VALUE

etPort_Send_Port_Information_Indication

Indicate that a remote device’s port parameters have been received (start of negotiation of

parameters).

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 SPP_Port_Information_t SPPPortInformation;

} SPP_Send_Port_Information_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

SPPPortInformation The port parameters from the remote side, defined by the

following structure:

typedef struct

{

 unsigned int PortInformationMask;

 unsigned int BaudRate;

 unsigned int DataBits;

 SPP_Stop_Bits_t StopBits;

 SPP_Parity_t Parity;

 Byte_t XOnCharacter;

 Byte_t XOffCharacter;

 unsigned int FlowControlMask;

} SPP_Port_Information_t;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 654 of 737 January 10, 2014

where PortInformationMask defines which of the port

parameters are set, defined by the following bit mask values:

SPP_PORT_INFORMATION_BAUD_RATE_BIT

SPP_PORT_INFORMATION_DATA_BITS_BIT

SPP_PORT_INFORMATION_STOP_BITS_BIT

SPP_PORT_INFORMATION_PARITY_BIT

SPP_PORT_INFORMATION_XON_CHARACTER_BIT

SPP_PORT_INFORMATION_XOFF_CHARACTER_BIT

SPP_PORT_INFORMATION_FLOW_CONTROL_BIT

Or it may be set to the following constant:

SPP_PORT_INFORMATION_NONE_VALUE

BaudRate can be one of the following values:

SPP_BAUD_RATE_MINIMUM

SPP_BAUD_RATE_MAXIMUM

SPP_BAUD_RATE_2400

SPP_BAUD_RATE_4800

SPP_BAUD_RATE_7200

SPP_BAUD_RATE_9600

SPP_BAUD_RATE_19200

SPP_BAUD_RATE_38400

SPP_BAUD_RATE_57600

SPP_BAUD_RATE_115200

SPP_BAUD_RATE_230400

DataBits can be one of the following values:

SPP_DATA_BITS_MINIMUM

SPP_DATA_BITS_MAXIMUM

SPP_DATA_BITS_5

SPP_DATA_BITS_6

SPP_DATA_BITS_7

SPP_DATA_BITS_8

StopBits can be one of the following values:

sbOneStopBit

sbOneOneHalfStopBit

Parity can be one of the following values:

ptNone

ptOdd

ptEven

ptMark

ptSpace

XOnCharacter and XoffCharacter may be any character.

However, the following constants are defined in RFCOMM and

may be useful for these:

RFCOMM_RPN_PARAMETER_DEFAULT_XON_CHARACTER

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 655 of 737 January 10, 2014

RFCOMM_RPN_PARAMETER_DEFAULT_XOFF_CHARACTER

FlowControlMask may contain one or more of the following bit

mask values:

SPP_FLOW_CONTROL_XON_XOFF_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_XON_XOFF_OUTPUT_ENABLED_BIT

SPP_FLOW_CONTROL_CTS_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_RTS_OUTPUT_ENABLED_BIT

SPP_FLOW_CONTROL_DSR_INPUT_ENABLED_BIT

SPP_FLOW_CONTROL_DTR_OUTPUT_ENABLED_BIT

Or may be set to the following value:

SPP_FLOW_CONTROL_DISABLED_VALUE

etPort_Send_Port_Information_Confirmation

Confirm that a response has been received to a send port parameters command.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 SPP_Port_Information_t SPPPortInformation;

} SPP_Send_Port_Information_Confirmation_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

SPPPortInformation Port parameters. See etPort_Send_Port_Information_Indication

event for a complete listing of this structure.

etPort_Query_Port_Information_Indication

Indicate that a request to send current port parameters has been received.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

} SPP_Query_Port_Information_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

etPort_Query_Port_Information_Confirmation

Confirm that a response has been received to a request to send current port parameters.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 656 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 SPP_Port_Information_t SPPPortInformation;

} SPP_Query_Port_Information_Confirmation_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

SPPPortInformation Port parameters. See etPort_Send_Port_Information_Indication

event for a complete listing of this structure.

etPort_Open_Request_Indication

Indicate that a Remote Port Open request has been received.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Return Structure:

typedef struct

{

 unsigned int SerialPortID;

 BD_ADDR_t BD_ADDR;

} SPP_Open_Port_Request_Indication_Data_t;

Event Parameters:

SerialPortID The port this event applies to.

BD_ADDR Address of the Bluetooth device.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 657 of 737 January 10, 2014

3.3 GOEP Programming Interface

The GOEP (Generic Object Exchange Profile) programming interface defines the protocols and

procedures to be used to implement Object Exchange (OBEX) capabilities such as folder

synchronization, file transfer, and Object Push activities. The GOEP commands are listed in

section 3.3.1, the event callback prototype is described in section 3.3.2, and the GOEP events are

itemized in section 3.3.3. The actual prototypes and constants outlined in this section can be

found in the GOEPAPI.H header file in the Bluetopia distribution.

3.3.1 GOEP Commands

The available GOEP command functions are listed in the table below and are described in the text

which follows.

Function Description

GOEP_Open_Server_Port Establish server port to wait for connections

GOEP_Close_Server_Port Close an open port

GOEP_Open_Port_Request_Response Respond to a port open request from the remote

device.

GOEP_Register_SDP_Record Add a generic SDP Service Record to the SDP

database

GOEP_Register_Raw_SDP_Record Adds a generic SDP Service Record to the SDP

database with only pre-parsed protocol list data

possibly added by the caller.

GOEP_Open_Remote_Port Open a serial port to a remote device.

GOEP_Close_Port Close either a server port or a remote port.

GOEP_Connect_Request Request a connection with a remote OBEX server.

GOEP_Disconnect_Request Close an OBEX server connection.

GOEP_Put_Request Push a data Object to a remote OBEX server.

GOEP_Get_Request Pull a data Object from a remote OBEX server

GOEP_Set_Path_Request Set the current folder for Put/Get Requests.

GOEP_Abort_Request Abort the current Put/Get Request.

GOEP_Command_Response Send a response back to the remote OBEX entity

(typically the client of the connection).

GOEP_Get_Server_Connection_Mode Query the current Server Connection Mode.

GOEP_Set_Server_Connection_Mode Change the current Server Connection Mode.

GOEP_Find_Application_Parameter_He

ader_By_Tag_ID

Traverses hidApplicationParameters Header types

and attempts to match the Tag ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 658 of 737 January 10, 2014

GOEP_Find_Header Scans through an array of headers for the header ID

type that was specified.

GOEP_Generate_Digest_Nonce Generates the MD5 Hash of the two pieces required

for OBEX Authentication.

GOEP_Open_Server_Port

This function is responsible for establishing a GOEP Port Server (OBEX server) which

will wait for a connection to occur on the port established by this function.

Prototype:

int BTPSAPI GOEP_Open_Server_Port(unsigned int BluetoothStackID,

unsigned int ServerPort, Word_t MaxPacketLength, GOEP_Event_Callback_t

GOEP_Event_Callback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerPort Port number to use. This must fall in the range defined by the

following constants:

SPP_PORT_NUMBER_MINIMUM

SPP_PORT_NUMBER_MAXIMUM

MaxPacketLength Max packet length that will be accepted by this server.

GOEP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the GOEP_ID for the server port

that was successfully opened. This is the value that should be used in all subsequent

function calls (except another GOEP_Open_Server_Port() call).

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

etOBEX_Port_Open_Request_Indication

etOBEX_Port_Open_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 659 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Close_Server_Port

This function is responsible for Unregistering a Serial Port Server which was registered by

a successful call to the GOEP_Open_Server_Port() function. Note, this function does

NOT delete any SDP Service Record Handles (i.e., added via a

GOEP_Register_SDP_Record() function call).

Prototype:

int BTPSAPI GOEP_Close_Server_Port(unsigned int BluetoothStackID,

unsigned int GOEP_ID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to close. This is the value that was returned from the

GOEP_Open_Server_Port() function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Open_Port_Request_Response

This function is responsible for responding to requests to connect to a OBEX Port Server.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 660 of 737 January 10, 2014

Prototype:

int BTPSAPI GOEP_Open_Port_Request_Response(unsigned int BluetoothStackID,

unsigned int GOEP_ID, Boolean_t AcceptConnection)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port this command applies to. This is the value that was

returned from the GOEP_Open_Server_Port() function.

AcceptConnection Boolean indicating if the pending connection should be

accepted.

Return:

 Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

etOBEX_Port_Open_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Register_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database.

Notes:

1. This function should only be called with the GOEP_ID that was returned from the

GOEP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the GOEP_Open_Remote_Port() function.

2. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps GOEP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is

defined as follows:

GOEP_Un_Register_SDP_Record(__BluetoothStackID, __GOEP_ID, __SDPRecordHandle)

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 661 of 737 January 10, 2014

3. There must be UUID Information specified in theSDPServiceRecord Parameter,

however protocol information is completely optional. Any Protocol Information that

is specified (if any) will be added in the Protocol Attribute AFTER the default OBEX

Protocol List (L2CAP, RFCOMM, and OBEX).

4. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI GOEP_Register_SDP_Record(unsigned int BluetoothStackID,

unsigned int GOEP_ID, GOEP_SDP_Service_Record_t *SDPServiceRecord,

char *ServiceName, DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port this command applies to. This is the value that was

returned from the GOEP_Open_Server_Port() function.

SDPServiceRecord Any additional Service Discovery Protocol information to be

added to the record for this serial port server. This is a

structured defined as:

typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 SDP_Data_Element_t *ProtocolList;

} GOEP_SDP_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 662 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Register_Raw_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database. This function is identical to the GOEP_Register_SDP_Record() with the

exception that any additional information to be added to the Protocol Attribute must be in

a pre-parsed format.

Notes:

1. This function should only be called with the GOEP_ID that was returned from the

GOEP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the GOEP_Open_Remote_Port() function.

2. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps GOEP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is

defined as follows:

GOEP_Un_Register_SDP_Record(__BluetoothStackID, __GOEP_ID, __SDPRecordHandle)

3. There must be UUID Information specified in theSDPServiceRecord Parameter,

however protocol information is completely optional. Any Protocol Information that

is specified (if any) will be added in the Protocol Attribute AFTER the default OBEX

Protocol List (L2CAP, RFCOMM, and OBEX).

4. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI GOEP_Register_Raw_SDP_Record(unsigned int BluetoothStackID,

unsigned int GOEP_ID,

GOEP_SDP_Raw_Service_Record_t *SDPServiceRecord,

char *ServiceName,

DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port this command applies to. This is the value that was

returned from the GOEP_Open_Server_Port() function.

SDPServiceRecord Contains any additional Service Discovery Protocol information

to be added to the record for this serial port server. This is a

structured defined as:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 663 of 737 January 10, 2014

typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 unsigned int NumberOfProtocolDataListUUIDOffsets;

 Word_t *ProtocolDataListUUIDOffsets;

 unsigned int ProtocolDataListLength;

 Byte_t *ProtocolDataList;

} GOEP_SDP_Raw_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Open_Remote_Port

This function is used to open a remote serial port on the specified Remote Device.

Prototype:

int BTPSAPI GOEP_Open_Remote_Port(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, unsigned int ServerPort, Word_t MaxPacketLength

GOEP_Event_Callback_t GOEP_Event_Callback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device to connect with.

ServerPort The remote device’s server port ID to connect with.

MaxPacketLength The largest packet that will be sent on this connection. Each

side must support a minimum of 255 bytes, and cannot have a

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 664 of 737 January 10, 2014

packet size greater than 64K-1 bytes. These constraints are

defined as the constants:

OBEX_PACKET_LENGTH_MINIMUM

OBEX_PACKET_LENGTH_MAXIMUM

GOEP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the GOEP_ID for the port that

was successfully opened. This is the value that should be used in all subsequent function

calls.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

RFCOMM_UNABLE_TO_CONNECT_TO_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

Possible Events:
etOBEX_Port_Open_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Close_Port

This function is used to close a GOEP Port that was previously opened with the

GOEP_Open_Server_Port() function or the GOEP_Open_Remote_Port() function. This

function does not unregister a GOEP Server Port from the system, it only disconnects any

connection that is currently active on the Server Port. The GOEP_Close_Server_Port()

function can be used to Unregister the GOEP Server Port.

Prototype:

int BTPSAPI GOEP_Close_Port(unsigned int BluetoothStackID, unsigned int GOEP_ID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 665 of 737 January 10, 2014

GOEP_ID The port to close. This is the value that was returned from the

GOEP_Open_Server_Port() or GOEP_Open_Remote_Port()

function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Connect_Request

Make a connection to a remote OBEX Server.

Prototype:

int BTPSAPI GOEP_Connect_Request(unsigned int BluetoothStackID,

unsigned int GOEP_ID, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to use for the connection.

Header_List A pointer to an array of optional headers. This parameter is

defined by the following structure:

typedef struct

{

 Byte_t NumberOfHeaders;

 OBEX_Header_t *Headers;

} OBEX_Header_List_t;

where OBEX_Header_t is defined as:

typedef struct

{

 OBEX_Header_ID_t OBEX_Header_ID;

 OBEX_Header_Type_t OBEX_Header_Type;

 union

 {

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 666 of 737 January 10, 2014

 Byte_t OneByteValue;

 DWord_t FourByteValue;

 OBEX_Byte_Sequence_t ByteSequence;

 OBEX_Word_Sequence_t UnicodeText;

 } Header_Value;

} OBEX_Header_t;

where OBEX_Header_ID may be one of the following

enumeration values:

hidCount, hidName, hidType, hidLength, hidTime,

hidDescription, hidTarget, hidHTTP, hidBody, hidEndOfBody,

hidWho, hidConnectionID, hidApplicationParameters,

hidAuthenticationChallenge, hidAuthenticationResponse,

hidObjectClass

and OBEX_Header_Type defines the format of the header and

may be one of the following enumeration values:

htUnsignedInteger1Byte

htUnsignedInteger4Byte

htNullTerminatedUnicodeText

htByteSequence

The Header_Value union contains the value for fixed length

formats or pointers to variable length format headers. The

sequence structures shown in this union are defined as:

typedef struct

{

 Word_t DataLength;

 Byte_t *ValuePointer;

} OBEX_Byte_Sequence_t;

typedef struct

{

 Word_t DataLength;

 Word_t *ValuePointer;

} OBEX_Word_Sequence_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Connect_Confirmation

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 667 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Disconnect_Request

Break a connection made with GOEP_Connect_Request(). This function may be called

from either the client or the server side of the connection.

Prototype:

int BTPSAPI GOEP_Disconnect_Request(unsigned int BluetoothStackID,

unsigned int GOEP_ID, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to close the connection on. This is the value that was

returned from either the GOEP_Open_Remote_Port() or

GOEP_Open_Server_Port() function.

Header_List A pointer to an array of optional headers. See

GOEP_Connect_Request() for a description of the headers.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Disconnect_Confirmation

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Put_Request

Push a data Object onto the remote OBEX server. The body of the object is contained in

the Header_List passed.

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 668 of 737 January 10, 2014

1. A file can be deleted on the Server with the Put Request by placing the name of the

file in the Name header (hidName) and omitting a body (hidBody).

2. An empty folder may be deleted in the same manner as the file delete in Note 1. On

some servers, it may also be possible to delete a folder with files in it by this method,

but others may not allow this operation, returning a “Precondition Failed” (0xCC)

response code.

Prototype:

int BTPSAPI GOEP_Put_Request(unsigned int BluetoothStackID, unsigned int GOEP_ID,

Boolean_t Final, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to send the Put Request to. This is the value that was

returned from the GOEP_Open_Remote_Port() function.

Final Flag which indicates if this is the last packet of the Put sequence

or not.

Header_List A pointer to an array of OBEX headers. This is the data to

send. See GOEP_Connect_Request() for a description of the

headers.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Put_Confirmation

etOBEX_Disconnect_Indication

etOBEX_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Get_Request

Pull a data Object from the remote OBEX server.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 669 of 737 January 10, 2014

Prototype:

int BTPSAPI GOEP_Get_Request(unsigned int BluetoothStackID, unsigned int GOEP_ID,

Boolean_t Final, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to send the Get Request to. This is the value that was

returned from the GOEP_Open_Remote_Port() function.

Final Flag which indicates when all the headers have been sent over

and the Server should start sending the object data.

Header_List A pointer to an optional array of OBEX headers. This is the

data to be retrieved, and is only optional on the final call. See

GOEP_Connect_Request() for a description of the headers.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Get_Confirmation

etOBEX_Disconnect_Indication

etOBEX_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Set_Path_Request

Change the current folder on the Server for subsequent Put and Get Requests. If a folder

name is supplied that doesn’t exist on the Server, a new folder will be created before the

Server changes to that folder.

Prototype:

int BTPSAPI GOEP_Set_Path_Request(unsigned int BluetoothStackID,

unsigned int GOEP_ID, Byte_t Flags, OBEX_Header_List_t *Header_List);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 670 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to send the Set Path Request to. This is the value that

was returned from the GOEP_Open_Remote_Port() function.

Flags Flags to control folder navigation and creation. Possible values

are:

OBEX_SET_PATH_FLAGS_BACKUP_MASK

OBEX_SET_PATH_FLAGS_NO_CREATE_MASK

Header_List A pointer to an array of OBEX headers. The path to change to

should be provided in a hidName type header. See

GOEP_Connect_Request() for a description of the headers.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Set_Path_Confirmation

etOBEX_Disconnect_Indication

etOBEX_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Abort_Request

Abort any Get or Put Request in progress.

Prototype:

int BTPSAPI GOEP_Abort_Request(unsigned int BluetoothStackID, unsigned int

GOEP_ID, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 671 of 737 January 10, 2014

GOEP_ID The port to send the Abort Request to. This is the value that

was returned from either the GOEP_Open_Remote_Port() or

the GOEP_Open_Server_Port() function.

Header_List A pointer to an array of OBEX headers. See

GOEP_Connect_Request() for a description of the headers.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

etOBEX_Abort_Confirmation

etOBEX_Disconnect_Indication

etOBEX_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Command_Response

Return a response to a GOEP command.

Prototype:

int BTPSAPI GOEP_Command_Response(unsigned int BluetoothStackID,

unsigned int GOEP_ID, Byte_t ResponseCode, OBEX_Header_List_t *Header_List);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port to send the Comamnd Response to. This is the value

that was provided in the event being responded to.

ResponseCode Response code to return to the requester. This code is a logical

ORing of the Final status flag (0x80 or the constant:

OBEX_FINAL_BIT) with one of the following possible status

values (all less than 0x7F).

OBEX_CONTINUE_RESPONSE

OBEX_OK_RESPONSE

OBEX_CREATED_RESPONSE

OBEX_ACCEPTED_RESPONSE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 672 of 737 January 10, 2014

OBEX_NON_AUTHORITATIVE_INFORMATION_RESPONSE

OBEX_NO_CONTENT_RESPONSE

OBEX_RESET_CONTENT_RESPONSE

OBEX_PARTIAL_CONTENT_RESPONSE

OBEX_MULTIPLE_CHOICES_RESPONSE

OBEX_MOVED_PERMANETLY_RESPONSE

OBEX_MOVED_TEMPORARILY_RESPONSE

OBEX_SEE_OTHER_RESPONSE

OBEX_NOT_MODIFIED_RESPONSE

OBEX_USE_PROXY_RESPONSE

OBEX_BAD_REQUEST_RESPONSE

OBEX_UNAUTHORIZED_RESPONSE

OBEX_PAYMENT_REQUIRED_RESPONSE

OBEX_FORBIDDEN_RESPONSE

OBEX_NOT_FOUND_RESPONSE

OBEX_METHOD_NOT_ALLOWED_RESPONSE

OBEX_NOT_ACCEPTABLE_RESPONSE

OBEX_PROXY_AUTHENTICATION_REQUIRED_RESPONSE

OBEX_REQUEST_TIMEOUT_RESPONSE

OBEX_CONFLICT_RESPONSE

OBEX_GONE_RESPONSE

OBEX_LENGTH_REQUIRED_RESPONSE

OBEX_PRECONDITION_FAILED_RESPONSE

OBEX_REQUESTED_ENTITY_TOO_LARGE_RESPONSE

OBEX_REQUESTED_URL_TOO_LARGE_RESPONSE

OBEX_UNSUPORTED_MEDIA_TYPE_RESPONSE

OBEX_INTERNAL_SERVER_ERROR_RESPONSE

OBEX_NOT_IMPLEMENTED_RESPONSE

OBEX_BAD_GATEWAY_RESPONSE

OBEX_SERVICE_UNAVAILABLE_RESPONSE

OBEX_GATEWAY_TIMEOUT_RESPONSE

OBEX_HTTP_VERSION_NOT_SUPPORTED_RESPONSE

OBEX_DATABASE_FULL_RESPONSE

OBEX_DATABASE_LOCKED_RESPONSE

Header_List Optional list of headers to be passed with the command

response (e.g., return data object requested).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:
etOBEX_Disconnect_Indication

etOBEX_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 673 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Get_Server_Connection_Mode

This function is responsible for allowing a mechanism to query the OBEX Port Server

Connection Mode.

Prototype:

int BTPSAPI GOEP_Get_Server_Connection_Mode(unsigned int BluetoothStackID,

unsigned int GOEP_ID, SPP_Server_Connection_Mode_t *ServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port this command applies to. This is the value that was

returned from the GOEP_Open_Server_Port() function.

ServerConnectionMode Pointer to a variable to receive the current Server Connection

Mode. The following modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Set_Server_Connection_Mode

This function is responsible for allowing a mechanism to change the OBEX Port Server

Connection Mode.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 674 of 737 January 10, 2014

Prototype:

int BTPSAPI GOEP_Set_Server_Connection_Mode(unsigned int BluetoothStackID,

unsigned int GOEP_ID, SPP_Server_Connection_Mode_t ServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_ID The port this command applies to. This is the value that was

returned from the GOEP_Open_Server_Port() function.

ServerConnectionMode The new Server Connection Mode being set. The following

modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_GOEP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

GOEP_Find_Application_Parameter_Header_By_Tag_ID

Given a pointer to a list of headers this function will traverse the

hidApplicationParameters Header types and match the Tag ID to one of the Triplets.

Prototype:

OBEX_Application_Parameters_t *BTPSAPI GOEP_Find_Application_Parameter_

Header_By_Tag_ID(OBEX_Header_List_t *HeaderListPtr, Byte_t TagID)

Parameters:

HeaderListPtr Pointer to list of OBEX Headers

TagID The Tag ID to attempt to match in the header.

Return:

If successful, pointer to the OBEX Application Parameters structure which was matched.

Its specification is below:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 675 of 737 January 10, 2014

typedef __PACKED_STRUCT_BEGIN__ struct

{

 Byte_t Tag;

 Byte_t Length;

 Byte_t Value[1];

} __PACKED_STRUCT_END__ OBEX_Application_Parameters_t;

If not found or an error occurs, NULL is returned.

Possible Events:

Notes:

GOEP_Find_Header

The following function is used to scan through an array of headers for the header ID type

that was specified.

Prototype:

int BTPSAPI GOEP_Find_Header(OBEX_Header_ID_t HeaderID,

OBEX_Header_List_t *ListPtr)

Parameters:

HeaderID Header ID to search for. May be one of the following:

 hidCount

 hidName

 hidType

 hidLength

 hidTime

 hidDescription

 hidTarget

 hidHTTP

 hidBody

 hidEndOfBody

 hidWho

 hidConnectionID

 hidApplicationParameters

 hidAuthenticationChallenge

 hidAuthenticationResponse

 hidObjectClass

ListPtr Pointer to header list to search for HeaderID.

Return:

If successful returns the index into Header list of the matched Header.

If not successful, returns negative value.

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 676 of 737 January 10, 2014

GOEP_Generate_Digest_Nonce

The following function is used to generate the MD5 Hash of the two pieces required for

OBEX Authentication. The two pieces refer to the first part of the data to be MD5 hashed

before the OBEX Delimeter and the second part of the data to be MD5 hashed after the

OBEX Delimeter. The OBEX Delimeter used by this function is defined as:

OBEX_DIGEST_CHALLENGE_RESPONSE_NONCE_MD5_DELIMETER_BYTE

The first and second parts *MUST* be specified and cannot of zero length. The MD5

Hash is returned (as an OBEX_Nonce_t) in the buffer passed as the final parameter to this

function (this parameter also *MUST* be specified and cannot be NULL). NOTE, as an

example (using simple ASCII strings):

GOEP_Generate_Digest_Nonce(4, "ABCD", 5, "WXYZ", &N);

would calculate the MD5 Hash of the following 9 bytes:

ABCD:WXYZ

and return this in the buffer pointed to by N. Note that the ':' character is assumed to be

the Delimeter constant mentioned above.

Prototype:

int BTPSAPI GOEP_Generate_Digest_Nonce(unsigned int PreDelimeterLength, Byte_t

*PreDelimeterData, unsigned int PostDelimeterLength, Byte_t *PostDelimeterData,

OBEX_Nonce_t *OutputNonce)

Parameters:

PreDelimeterLength Number of bytes in the byte array pointed to by

PreDelimeterData.

PreDelimeterData The byte array buffer that holds the piece that will MD5 hashed

before the OBEX Delimeter.

PostDelimeterLength Number of bytes in the byte array pointed to by

PostDelimeterData.

PostDelimeterData The byte array buffer that holds the piece that will MD5 hashed

afer the OBEX Delimeter.

OutputNonce Buffer to hold the returned MD5 hash. Must not be NULL.

Return:

Zero if successful.

An error code if negative; one of the following values:
BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INSUFFICIENT_RESOURCES

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 677 of 737 January 10, 2014

3.3.2 GOEP Event Callback Protoype

The event callback functions mentioned in the GOEP Open commands all accept the callback

function described by the following prototype.

GOEP_Event_Callback_t

Prototype of callback function passed in one of the GOEP open commands.

Prototype:

void (BTPSAPI *GOEP_Event_Callback_t)(unsigned int BluetoothStackID,

GOEP_Event_Data_t *GOEP_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

GOEP_Event_Data Data describing the event for which the callback function is

called. This is defined by the following struture:

typedef struct

{

 OBEX_Event_Data_Type_t Event_Data_Type;

 Word_t Event_Data_Size;

 union

 {

 OBEX_Port_Open_Indication_Data_t *OBEX_Port_Open_Indication_Data;

 OBEX_Port_Open_Confirmation_Data_t *OBEX_Port_Open_Confirmation_Data;

 OBEX_Port_Close_Indication_Data_t *OBEX_Port_Close_Indication_Data;

 OBEX_Connect_Indication_Data_t *OBEX_Connect_Indication_Data;

 OBEX_Connect_Confirmation_Data_t *OBEX_Connect_Confirmation_Data;

 OBEX_Disconnect_Indication_Data_t *OBEX_Disconnect_Indication_Data;

 OBEX_Disconnect_Confirmation_Data_t *OBEX_Disconnect_Confirmation_Data;

 OBEX_Put_Indication_Data_t *OBEX_Put_Indication_Data;

 OBEX_Put_Confirmation_Data_t *OBEX_Put_Confirmation_Data;

 OBEX_Get_Indication_Data_t *OBEX_Get_Indication_Data;

 OBEX_Get_Confirmation_Data_t *OBEX_Get_Confirmation_Data;

 OBEX_Set_Path_Indication_Data_t *OBEX_Set_Path_Indication_Data;

 OBEX_Set_Path_Confirmation_Data_t *OBEX_Set_Path_Confirmation_Data;

 OBEX_Abort_Indication_Data_t *OBEX_Abort_Indication_Data;

 OBEX_Abort_Confirmation_Data_t *OBEX_Abort_Confirmation_Data;

 OBEX_Port_Open_Request_Indication_Data_t

*OBEX_Port_Open_Request_Indication_Data;

 } Event_Data;

} GOEP_Event_Data_t;

where, Event_Data_Type is one of the enumerations of the event

types listed in the table in section 3.3.3, and each data structure

in the union is described with its event in that section as well.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 678 of 737 January 10, 2014

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.3.3 GOEP Events

The possible GOEP events from the Bluetooth stack are listed in the table below and are

described in the text which follows:

Event Description

etOBEX_Port_Open_Indication Indicate that a Remote Port Open connection has been

made.

etOBEX_Port_Open_Confirmation Confirm that a Port Open request has been responded

to or has errored out.

etOBEX_Port_Open_Request_Indicati

on

Indicate that a Remote Port Open request has been

received.

etOBEX_Port_Close_Indication Indicate that a port has been closed (unregistered).

etOBEX_Connect_Indication Indicate that a Connect Request has been received.

etOBEX_Connect_Confirmation Confirm that a Connect Request has been responded to

or has errored out

etOBEX_Disconnect_Indication Indicate that a Disconnect Request has been received.

etOBEX_Disconnect_Confirmation Confirm that a Disconnect Request has been

responded to or has errored out

etOBEX_Put_Indication Indicate that a Put Request has been received.

etOBEX_Put_Confirmation Confirm that a Put Request has been responded to or

has errored out

etOBEX_Get_Indication Indicate that a Get Request has been received.

etOBEX_Get_Confirmation Confirm that a Get Request has been responded to or

has errored out

etOBEX_Set_Path_Indication Indicate that a Set Path Request has been received.

etOBEX_Set_Path_Confirmation Confirm that a Set Path Request has been responded to

or has errored out

etOBEX_Abort_Indication Indicate that an Abort Request has been received.

etOBEX_Abort_Confirmation Confirm that an Abort Request has been responded to

or has errored out

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 679 of 737 January 10, 2014

Several of the events return a Response_Code. This code is a logical ORing of the Final status

flag (0x80 or constant: OBEX_FINAL_BIT) with one of the following possible status values (all

less than 0x7F).

OBEX_CONTINUE_RESPONSE

OBEX_OK_RESPONSE

OBEX_CREATED_RESPONSE

OBEX_ACCEPTED_RESPONSE

OBEX_NON_AUTHORITATIVE_INFORMATION_RESPONSE

OBEX_NO_CONTENT_RESPONSE

OBEX_RESET_CONTENT_RESPONSE

OBEX_PARTIAL_CONTENT_RESPONSE

OBEX_MULTIPLE_CHOICES_RESPONSE

OBEX_MOVED_PERMANETLY_RESPONSE

OBEX_MOVED_TEMPORARILY_RESPONSE

OBEX_SEE_OTHER_RESPONSE

OBEX_NOT_MODIFIED_RESPONSE

OBEX_USE_PROXY_RESPONSE

OBEX_BAD_REQUEST_RESPONSE

OBEX_UNAUTHORIZED_RESPONSE

OBEX_PAYMENT_REQUIRED_RESPONSE

OBEX_FORBIDDEN_RESPONSE

OBEX_NOT_FOUND_RESPONSE

OBEX_METHOD_NOT_ALLOWED_RESPONSE

OBEX_NOT_ACCEPTABLE_RESPONSE

OBEX_PROXY_AUTHENTICATION_REQUIRED_RESPONSE

OBEX_REQUEST_TIMEOUT_RESPONSE

OBEX_CONFLICT_RESPONSE

OBEX_GONE_RESPONSE

OBEX_LENGTH_REQUIRED_RESPONSE

OBEX_PRECONDITION_FAILED_RESPONSE

OBEX_REQUESTED_ENTITY_TOO_LARGE_RESPONSE

OBEX_REQUESTED_URL_TOO_LARGE_RESPONSE

OBEX_UNSUPORTED_MEDIA_TYPE_RESPONSE

OBEX_INTERNAL_SERVER_ERROR_RESPONSE

OBEX_NOT_IMPLEMENTED_RESPONSE

OBEX_BAD_GATEWAY_RESPONSE

OBEX_SERVICE_UNAVAILABLE_RESPONSE

OBEX_GATEWAY_TIMEOUT_RESPONSE

OBEX_HTTP_VERSION_NOT_SUPPORTED_RESPONSE

OBEX_DATABASE_FULL_RESPONSE

OBEX_DATABASE_LOCKED_RESPONSE

etOBEX_Port_Open_Indication

Indicate that a Remote Port Open connection has been made.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 680 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 BD_ADDR_t BD_ADDR;

} OBEX_Port_Open_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

BD_ADDR Address of the Bluetooth device making the request.

etOBEX_Port_Open_Confirmation

Confirm that a Port Open request has been responded to or has errored out.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 unsigned int PortOpenStatus;

} OBEX_Port_Open_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

PortOpenStatus One of the following possible status values:

GOEP_OPEN_PORT_STATUS_SUCCESS

GOEP_OPEN_PORT_STATUS_CONNECTION_TIMEOUT

GOEP_OPEN_PORT_STATUS_CONNECTION_REFUSED

GOEP_OPEN_PORT_STATUS_UNKNOWN_ERROR

etOBEX_Port_Close_Indication

Indicate that a port has been closed (unregistered).

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

} OBEX_Port_Close_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

etOBEX_Connect_Indication

Indicate that a Connect Request has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 681 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Version_Number;

 Word_t Max_Packet_Length;

 OBEX_Header_List_t Header_List;

} OBEX_Connect_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Version_Number Version of the OBEX used by the connection requester.

Max_Packet_Length The maximum packet length supported by the requester. This is

non-negotiable and may be different than what the responder

supports. Each side must support a minimum of 255 bytes, and

cannot have a packet size greater than 64K-1 bytes. These

constraints are defined as the constants:

OBEX_PACKET_LENGTH_MINIMUM

OBEX_PACKET_LENGTH_MAXIMUM

Header_List Optional list of headers passed with the Connect Request.

etOBEX_Connect_Confirmation

Confirm that a Connect Request has been responded to or has errored out

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 Byte_t Version_Number;

 Byte_t Flags;

 Word_t Max_Packet_Length;

 OBEX_Header_List_t Header_List;

} OBEX_Connect_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Version_Number Version of the OBEX used by the connection requester.

Flags Used to indicate whether the Server can support multiple

connections or not. Possible values are as follows:
OBEX_CONNECTION_FLAGS_RESPONSE_MULTIPLE_IRLMP_CONNECTIONS

Max_Packet_Length The maximum packet length supported by the requester. This is

non-negotiable and may be different than what the responder

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 682 of 737 January 10, 2014

supports. Each side must support a minimum of 255 bytes, and

cannot have a packet size greater than 64K-1 bytes.

Header_List Optional list of headers passed with the Connect Request.

etOBEX_Disconnect_Indication

Indicate that a Disconnect Request has been received.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 OBEX_Header_List_t Header_List;

} OBEX_Disconnect_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Header_List Optional list of headers passed with the Disconnect Request.

etOBEX_Disconnect_Confirmation

Confirm that a Disconnect Request has been responded to or has errored out

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 OBEX_Header_List_t Header_List;

} OBEX_Disconnect_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Header_List Optional list of headers passed with the Disconnect Request.

etOBEX_Put_Indication

Indicate that a Put Request has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 683 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Boolean_t Final_Flag;

 OBEX_Header_List_t Header_List;

} OBEX_Put_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Final_Flag Whether this is the last packet in a multi-packet Put Request or

not.

Header_List List of headers. The body of the object being pushes is included

(hidBody type header).

etOBEX_Put_Confirmation

Confirm that a Put Request has been responded to or has errored out

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 OBEX_Header_List_t Header_List;

} OBEX_Put_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Header_List List of headers passed with the Put Request.

etOBEX_Get_Indication

Indicate that a Get Request has been received.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Boolean_t Final_Flag;

 OBEX_Header_List_t Header_List;

} OBEX_Get_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 684 of 737 January 10, 2014

Final_Flag Whether this is the last packet in a multi-packet Get Request or

not.

Header_List List of headers.

etOBEX_Get_Confirmation

Confirm that a Get Request has been responded to or has errored out

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 OBEX_Header_List_t Header_List;

} OBEX_Get_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Header_List Optional list of headers.

etOBEX_Set_Path_Indication

Indicate that a Set Path Request has been received.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Boolean_t CreateDirectory;

 Boolean_t Backup;

 OBEX_Header_List_t Header_List;

} OBEX_Set_Path_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

CreateDirectory Whether the folder indicated (in the Header_List) should be

created if it doesn’t exist.

Backup Go back up one level in the directory tree.

Header_List List of headers sent with the Set Path Request, e.g., the name

(hidName) of the Path.

etOBEX_Set_Path_Confirmation

Confirm that a Set Path Request has been responded to or has errored out

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 685 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 OBEX_Header_List_t Header_List;

} OBEX_Set_Path_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Header_List List of headers passed with the Set Path Request, e.g., the name

(hidName) of the Path.

etOBEX_Abort_Indication

Indicate that an Abort Request has been received.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 OBEX_Header_List_t Header_List;

} OBEX_Abort_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Header_List Optional list of headers passed with the Abort Request.

etOBEX_Abort_Confirmation

Confirm that an Abort Request has been responded to or has errored out

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 Byte_t Response_Code;

 OBEX_Header_List_t Header_List;

} OBEX_Abort_Confirmation_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

Response_Code One of the values indicated near the beginning of this section.

Header_List Optional list of headers passed with the Abort Request.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 686 of 737 January 10, 2014

etOBEX_Port_Open_Request_Indication

Indicate that a Remote Port Open request has been received.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Return Structure:

typedef struct

{

 unsigned int GOEP_ID;

 BD_ADDR_t BD_ADDR;

} OBEX_Port_Open_Request_Indication_Data_t;

Event Parameters:

GOEP_ID Identifier of the GOEP server connection.

BD_ADDR Address of the Bluetooth device.

3.4 OTP Programming Interface

The OTP (Object Transfer Protocol) programming interface defines the protocols and procedures

to be used to perform File Transfer Protocol (FTP) and Object Transfer Protocol functions called

out in the Bluetooth Profile specification. The OTP commands are listed in section 3.4.1, the

response codes are listed in section 3.4.2, the event callback prototype is described in section

3.4.3, and the OTP events are itemized in section 3.4.4. The actual prototypes and constants

outlined in this section can be found in the OTPAPI.H header file in the Bluetopia distribution.

3.4.1 OTP Commands/Responses

The available OTP Command and Response functions are listed in the table below and are

described in the text which follows.

Function Description

OTP_Open_Server_Port Establish server port to wait for connections

OTP_Close_Server_Port Close an open port

OTP_Open_Port_Request_Response Respond to an open request from the remote

device.

OTP_Register_SDP_Record Add a generic SDP Service Record to the SDP

database.

OTP_Register_Raw_SDP_Record Adds a generic SDP Service Record to the SDP

database with only pre-parsed protocol list data

possibly added by the caller.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 687 of 737 January 10, 2014

OTP_Open_Remote_Port Open an OBEX connection to a remote device

OTP_Close_Port Close either a server port or a remote port

OTP_Client_Connect Make a connection with a remote OBEX server

OTP_Client_Disconnect Close an OBEX server connection

OTP_Client_Get_Directory Get a directory listing of the current folder from

the remote OBEX file browing server

OTP_Client_Get_Object Pull a data Object from a remote OBEX server

OTP_Client_Put_Object_Request Request permission to push an Object into a

remote OBEX server

OTP_Client_Put_Sync_Object_Request Request permission to push an Object into a

remote OBEX Sync server

OTP_Client_Put_Object Push a data Object into a remote OBEX server,

after receiving confirmation/permission via a

_Request

OTP_Client_Set_Path Create, delete or set the current folder on the

OBEX server

OTP_Client_Delete_Object_Request Delete an Object from a remote OBEX server

OTP_Client_Delete_Sync_Object_Request Delete an Object from a remote OBEX Sync server

OTP_Client_Abort_Request Abort the current request to the server

OTP_Connect_Response Respond to the OTP client for a Connect command

OTP_Get_Directory_Request_Response Respond to the OTP client for a Get Directory

command

OTP_Set_Path_Response Respond to the OTP client for a Set Path command

OTP_Abort_Response Respond to the OTP client for an Abort command

OTP_Get_Object_Response Respond to the OTP client for a Get Object

command

OTP_Delete_Object_Response Respond to the OTP client for a Delete Object

command

OTP_Delete_Sync_Object_Response Respond to the OTP client for a Delete Object

command on a Sync Server

OTP_Put_Object_Response Respond to the OTP client for a Put Object

command

OTP_Put_Sync_Object_Response Respond to the OTP client for a Put Object

command on a Sync Server

OTP_Get_Server_Connection_Mode Query the current Server Connection Mode.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 688 of 737 January 10, 2014

OTP_Set_Server_Connection_Mode Change the current Server Connection Mode.

OTP_Open_Server_Port

This function is responsible for establishing a OTP Port Server which will wait for a

connection to occur on the port established by this function.

Prototype:

int BTPSAPI OTP_Open_Server_Port(unsigned int BluetoothStackID,

Byte_t ServerPort, OTP_Target_t Target, Word_t MaxPacketLength,

OTP_Event_Callback_t OTP_Event_Callback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

ServerPort Port number to use. This must fall in the range defined by the

following constants:

SPP_PORT_NUMBER_MINIMUM

SPP_PORT_NUMBER_MAXIMUM

Target The service on the remote server to which the connection is

targeted. May be one of the following values:
tInbox

tFileBrowser

tIRSync

MaxPacketLength The largest packet that will be sent/received on this connection.

Each side must support a minimum of 255 bytes, and cannot

have a packet size greater than 64K-1 bytes. These constraints

are defined as the constants:

OTP_PACKET_LENGTH_MINIMUM

OTP_PACKET_LENGTH_MAXIMUM

OTP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the OTP_ID for the server port

that was successfully opened. This is the value that should be used in all subsequent

function calls (except another OTP_Open_Server_Port() call).

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 689 of 737 January 10, 2014

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Open_Request_Indication

etOTP_Port_Open_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Close_Server_Port

This function is responsible for Unregistering a Serial Port Server which was registered by

a successful call to the OTP_Open_Server_Port() function. Note, this function does NOT

delete any SDP Service Record Handles (i.e., added via a OTP_Register_SDP_Record()

function call).

Prototype:

int BTPSAPI OTP_Close_Server_Port(unsigned int BluetoothStackID,

unsigned int OTP_ID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port to close. This is the value that was returned from the

OTP_Open_Server_Port() function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 690 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Open_Port_Request_Response

This function is responsible for responding to requests to connect to a OTP Port Server.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Prototype:

int BTPSAPI OTP_Open_Port_Request_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Boolean_t AcceptConnection)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port this command applies to. This is the value that was

returned from the OTP_Open_Server_Port() function.

AcceptConnection Boolean indicating if the pending connection should be

accepted.

Return:

 Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_OTP_NOT_INITIALIZED

Possible Events:

etOTP_Port_Open_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Register_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 691 of 737 January 10, 2014

Notes:

1. This function should only be called with the OTP_ID that was returned from the

OTP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the OTP_Open_Remote_Port() function.

2. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps OTP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is defined

as follows:

OTP_Un_Register_SDP_Record(__BluetoothStackID, __OTPID, __SDPRecordHandle)

3. There must be UUID Information specified in theSDPServiceRecord Parameter,

however protocol information is completely optional. Any Protocol Information that

is specified (if any) will be added in the Protocol Attribute AFTER the default OTP

Protocol List (L2CAP, RFCOMM, and OTP).

4. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI OTP_Register_SDP_Record(unsigned int BluetoothStackID,

unsigned int OTP_ID, OTP_SDP_Service_Record_t *SDPServiceRecord,

char *ServiceName, DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port this command applies to. This is the value that was

returned from the OTP_Open_Server_Port() function.

SDPServiceRecord Any additional Service Discovery Protocol information to be

added to the record for this serial port server. This is a

structured defined as:

typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 SDP_Data_Element_t *ProtocolList;

} OTP_SDP_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 692 of 737 January 10, 2014

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Register_Raw_SDP_Record

This function provides a means to add a generic SDP Service Record to the SDP

Database. This function is identical to the OTP_Register_SDP_Record() with the

exception that any additional information to be added to the Protocol Attribute must be in

a pre-parsed format.

Notes:

5. This function should only be called with the OTP_ID that was returned from the

OTP_Open_Server_Port() function. This function should never be used with the

Serial Port ID returned from the OTP_Open_Remote_Port() function.

6. The Service Record Handle that is returned from this function will remain in the SDP

Record Database until it is deleted by calling the SDP_Delete_Service_Record() function.

A Macro is provided to delete the Service Record from the SDP Database. This Macro

maps OTP_Un_Register_SDP_Record() to SDP_Delete_Service_Record(), and is defined

as follows:

OTP_Un_Register_SDP_Record(__BluetoothStackID, __OTPID, __SDPRecordHandle)

7. There must be UUID Information specified in theSDPServiceRecord Parameter,

however protocol information is completely optional. Any Protocol Information that

is specified (if any) will be added in the Protocol Attribute AFTER the default OTP

Protocol List (L2CAP, RFCOMM, and OTP).

8. The Service Name is always added at Attribute ID 0x0100. A Language Base

Attribute ID List is created that specifies that 0x0100 is UTF-8 Encoded, English

Language.

Prototype:

int BTPSAPI OTP_Register_Raw_SDP_Record(unsigned int BluetoothStackID,

unsigned int OTP_ID,

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 693 of 737 January 10, 2014

OTP_SDP_Raw_Service_Record_t *SDPServiceRecord,

char *ServiceName,

DWord_t *SDPServiceRecordHandle)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port this command applies to. This is the value that was

returned from the OTP_Open_Server_Port() function.

SDPServiceRecord Any additional Service Discovery Protocol information to be

added to the record for this serial port server. This is a

structured defined as:
typedef struct

{

 unsigned int NumberServiceClassUUID;

 SDP_UUID_Entry_t *SDPUUIDEntries;

 unsigned int NumberOfProtocolDataListUUIDOffsets;

 Word_t *ProtocolDataListUUIDOffsets;

 unsigned int ProtocolDataListLength;

 Byte_t *ProtocolDataList;

} OTP_SDP_Raw_Service_Record_t;

ServiceName Name to appear in the SDP Database for this service.

SDPServiceRecordHandle Returned handle to the SDP Database entry which may be used

to remove the entry at a later time.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 694 of 737 January 10, 2014

OTP_Open_Remote_Port

This function is used to open a remote serial port on the specified Remote Device.

Prototype:

int BTPSAPI OTP_Open_Remote_Port(unsigned int BluetoothStackID,

BD_ADDR_t BD_ADDR, Byte_t ServerPort, Word_t MaxPacketLength

OTP_Event_Callback_t OTP_Event_Callback, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

BD_ADDR Address of the Bluetooth device to connect with.

ServerPort The remote device’s server port ID to connect with.

MaxPacketLength The largest packet that will be sent/received on this connection.

Each side must support a minimum of 255 bytes, and cannot

have a packet size greater than 64K-1 bytes. These constraints

are defined as the constants:

OTP_PACKET_LENGTH_MINIMUM

OTP_PACKET_LENGTH_MAXIMUM

OTP_Event_Callback Function to call when events occur on this port.

CallbackParameter A user-defined parameter (e.g., a tag value) that will be passed

back to the user in the callback function with each packet.

Return:

Positive, non-zero if successful. The return value will be the OTP_ID for the port that was

successfully opened. This is the value that should be used in all subsequent function calls.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

RFCOMM_UNABLE_TO_CONNECT_TO_REMOTE_DEVICE

BTPS_ERROR_RFCOMM_UNABLE_TO_COMMUNICATE_

WITH_REMOTE_DEVICE

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Port_Open_Confirmation

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 695 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Close_Port

This function is used to close a OTP Port that was previously opened with the

OTP_Open_Server_Port() function or the OTP_Open_Remote_Port() function. This

function does not unregister a OTP Server Port from the system, it only disconnects any

connection that is currently active on the Server Port. The OTP_Close_Server_Port()

function can be used to Unregister the OTP Server Port.

Prototype:

int BTPSAPI OTP_Close_Port(unsigned int BluetoothStackID, unsigned int OTP_ID)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port to close. This is the value that was returned from the

OTP_Open_Server_Port() or OTP_Open_Remote_Port()

function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Connect

Make a connection to a remote OBEX Server.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 696 of 737 January 10, 2014

Prototype:

int BTPSAPI OTP_Client_Connect(unsigned int BluetoothStackID, unsigned int OTP_ID,

OTP_Target_t Target, OTP_Digest_Challenge_t *DigestChallenge,

OTP_Digest_Response_t *DigestResponse);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port to use.

Target The service on the remote server to which the connection is

targeted. May be one of the following values:

tUnknown

tInbox

tFileBrowser

tIRSync

DigestChallenge Used along with DigestResponse to pass Authentication

Request and Response information between Server and Clients.

These parameters should be set to NULL if authentication is not

in use. This data item is the following structure:

typedef struct

{

 Byte_t Nonce[OTP_DIGEST_MAXIMUM_NONCE_LENGTH];

 Byte_t OptionalParametersMask;

 Byte_t Options;

 unsigned int RealmLength;

 Byte_t RealmCharacterSet;

 char Realm[OTP_DIGEST_MAXIMUM_REALM_LENGTH];

} OTP_Digest_Challenge_t;

The Nonce field is mandatory and must be 16 bytes in length.

The Realm value has been limited to 50 bytes in this

implementation (as defined by the constants shown).

The OptionalParametersMask is a set of bits that define which

of the Optional parameters is filled in this structure (if the bit is

set). This parameter is a logical ORing of the following bit

constants:

OTP_DIGEST_CHALLENGE_OPTIONAL_PARAMETERS_MASK_OPTIONS

OTP_DIGEST_CHALLENGE_OPTIONAL_PARAMETERS_MASK_REALM

The following values are legal in the Options field:

OTP_DIGEST_CHALLENGE_OPTIONS_USER_ID_IN_RESPONSE_BIT

OTP_DIGEST_CHALLENGE_OPTIONS_ACCESS_MODE_READ_ONLY_BIT

Possible values for the RealmCharacterSet are:
OTP_REALM_CHARACTER_SET_ASCII

OTP_REALM_CHARACTER_SET_ISO88591

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 697 of 737 January 10, 2014

OTP_REALM_CHARACTER_SET_ISO88592

OTP_REALM_CHARACTER_SET_ISO88593

OTP_REALM_CHARACTER_SET_ISO88594

OTP_REALM_CHARACTER_SET_ISO88595

OTP_REALM_CHARACTER_SET_ISO88596

OTP_REALM_CHARACTER_SET_ISO88597

OTP_REALM_CHARACTER_SET_ISO88598

OTP_REALM_CHARACTER_SET_ISO88599

OTP_REALM_CHARACTER_SET_UNICODE

DigestResponse This is defined by the following structure:

typedef struct

{

 Byte_t RequestDigest[OTP_DIGEST_MAXIMUM_REQUEST_DIGEST_LENGTH];

 Byte_t OptionalParametersMask;

 unsigned int UserIDLength;

 Byte_t UserID[OTP_DIGEST_MAXIMUM_USER_ID_LENGTH];

 Byte_t Nonce[OTP_DIGEST_MAXIMUM_NONCE_LENGTH];

} OTP_Digest_Response_t;

The RequestDigest field is mandatory and must be 16 bytes and,

similarly, the UserID has been limited in size in this

implementation (as defined by the constants shown).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Connect_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Disconnect

Break a connection made with OTP_Client_Connect().

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 698 of 737 January 10, 2014

Prototype:

int BTPSAPI OTP_Client_Disconnect(unsigned int BluetoothStackID,

unsigned int OTP_ID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port on which to close the connection. This is the value

that was returned from either the OTP_Open_Remote_Port().

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Disconnect_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Get_Directory

Get a directory listing of the current folder from the remote OBEX file browing server.

Prototype:

int BTPSAPI OTP_Client_Get_Directory(unsigned int BluetoothStackID,

unsigned int OTP_ID, char *Name);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 699 of 737 January 10, 2014

Name A pointer to a ASCIIZ string that identifies the name of the

directory that is to be retreived. When specifying the Name, No

path information is allowed. When retreiving a directory listing,

the SETPATH function should be used to set the current

directory. This function is then called with the Name parameter

set to NULL to pull the current directory. If the Name

parameter is not NULL, then Name must point to a ASCIIZ

string of the name of a sub-directory that exists off the current

directory. It must also be noted that when the Name parameter

is used, a sub-directory listing will be returned for the directory

specified, however, the current directory will remain the same

and will not be changed to the sub-directory specified.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Get_Directory_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Get_Object

Pull a data Object from a remote OBEX server.

Prototype:

int BTPSAPI OTP_Client_Get_Object(unsigned int BluetoothStackID,

unsigned int OTP_ID, char *Type, char *Name, unsigned long UserInfo);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 700 of 737 January 10, 2014

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Type A pointer to a NULL terminated string that describes the type of

object to be retreived

Name A pointer to a NULL terminated string that specifies the Name

of the Object that is to be retreived.

It should be noted that when connected to an OBEX File

Browser Service, the Type parameter is optional. When

connected to the OBEX Inbox, the Name parameter is optional.

UserInfo A user-defined parameter that will be passed back in the event

callback.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Get_Object_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Put_Object_Request

Request permission to save or create an object on the remote OBEX server.

Prototype:

int BTPSAPI OTP_Client_Put_Object_Request(unsigned int BluetoothStackID,

unsigned int OTP_ID, Boolean_t CreateOnly, unsigned int Length, char *Type,

char *Name, unsigned long UserInfo);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 701 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

CreateOnly Specifies whether or not this request is being made as an

introduction to putting an object (CreateOnly equals FALSE), or

to simply create an object of zero length (CreateOnly equals

TRUE).

Length The Length (in Bytes) of the actual Object that is to be placed

on the Remote Server.

Type A pointer to a NULL terminated string that describes the type of

object to be retreived. This is NULL for files or a string that

defines the Object Type (for example “text/x-vCard” to put a

vCard Object). This field is only used if the Target is not a File

Browser.

Name A pointer to a NULL terminated string that specifies the Name

of the Object that is to be sent.

UserInfo A user-defined parameter that will be passed back in the event

callback.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Put_Object_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 702 of 737 January 10, 2014

OTP_Client_Put_Sync_Object_Request

Request permission to save an object on the remote OBEX Sync server. This function

differs from the normal Put Object function in that this function allows a Synchronization

Anchor to be specified. Note that this function does not allow the specification of the type

of Object that is being placed on the remote OBEX Sync server. The type of object is

inferred from the the path of the name of the object (e.g. “/telecom/pb” as the path means

the object is a vCARD) as per the IRSync specification.

Prototype:

int BTPSAPI OTP_Client_Put_Sync_Object_Request(unsigned int BluetoothStackID,

unsigned int OTP_ID, unsigned int Length, char *Type,

SyncAnchor_t *SyncAnchor, unsigned long UserInfo);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Length The Length (in Bytes) of the actual Object that is to be placed

on the Remote Server.

Name A pointer to a NULL terminated string that specifies the Name

of the Object that is to be sent.

SyncAnchor A pointer to structure that contains the Synchronization Anchor

information for the Object. This structure is defined as:

typedef struct

{

 Boolean_t TimestampUsed;

 OTP_TimeDate_t Timestamp;

 Boolean_t ChangeCountUsed;

 DWord_t ChangeCount;

} SyncAnchor_t;

UserInfo A user-defined parameter that will be passed back in the event

callback.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 703 of 737 January 10, 2014

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Put_Sync_Object_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Put_Object

Send a data Object to the remote OTP server. This can only be called after a sucessful

response from a call to OTP_Client_Put_Object_Request() or

OTP_Client_Put_Sync_Object_Request().

Prototype:

int BTPSAPI OTP_Client_Put_Object(unsigned int BluetoothStackID, unsigned int OTP_ID,

unsigned int DataLength, Byte_t *Data, Boolean_t Final, unsigned long UserInfo);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port to send the Put Request to. This is the value that was

returned from the OTP_Open_Remote_Port() function.

DataLength The number of bytes being passed in this call in the Data

parameter.

Data Data to be sent for this object in this call.

Final Flag which indicates if this is the last packet of the Put sequence

or not.

UserInfo A user-defined parameter that will be passed back in the event

callback.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 704 of 737 January 10, 2014

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Put_Object_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Set_Path

Create, delete or set the current folder on the OBEX server. If a folder name is supplied

that doesn’t exist on the Server, a new folder will be created before the Server changes to

that folder.

Prototype:

int BTPSAPI OTP_Client_Set_Path(unsigned int BluetoothStackID, unsigned int OTP_ID,

char *Name, Boolean_t Backup, Boolean_t Create);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port to send the Get Request to. This is the value that was

returned from the OTP_Open_Remote_Port() function.

Name A pointer to a NULL terminated string of the path to the sub-

directory referenced from the current directory.

Backup Go back up one level in the directory structure. When this is set

to TRUE, it takes priority over the Name parameter which is

ignored in this situation.

Create Whether or not to create the directory if it does not already

exist. The Name parameter must be supplied if TRUE.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 705 of 737 January 10, 2014

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Set_Path_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Delete_Object_Request

Delete an Object from a remote OBEX server.

Prototype:

int BTPSAPI OTP_Client_Delete_Object_Request(unsigned int BluetoothStackID,

unsigned int OTP_ID, char *Name);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Name A pointer to a NULL terminated string that indicates the object

to be deleted.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Delete_Object_Response

etOTP_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 706 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Delete_Sync_Object_Request

Delete an Object from a remote OBEX Sync server.

Prototype:

int BTPSAPI OTP_Client_Delete_Sync_Object_Request(unsigned int BluetoothStackID,

unsigned int OTP_ID, char *Name, SyncAnchor_t *SyncAnchor,

Boolean_t HardDelete);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Name A pointer to a NULL terminated string that indicates the object

to be deleted.

SyncAnchor A pointer to a Syncronization Anchor to use. This member only

has meaning if the SyncAnchor type is of type Change Counter.

This action then allows the remote OBEX Sync entity the ability

to allow/reject the delete based on the remote OBEX Sync

servers Current Change Count for the Object. This value should

be the expected Change Count of the Object AFTER the delete

is successful (i.e. not the current Change Count value). This

structure is defined as:

typedef struct

{

 Boolean_t TimestampUsed;

 OTP_TimeDate_t Timestamp;

 Boolean_t ChangeCountUsed;

 DWord_t ChangeCount;

} SyncAnchor_t;

HardDelete A Boolean_t flag which specifies whether the delete is Hard

Delete (TRUE) or Soft Delete (FALSE).

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 707 of 737 January 10, 2014

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Delete_Sync_Object_Response

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Client_Abort_Request

Abort the current request to the server.

Prototype:

int BTPSAPI OTP_Client_Abort(unsigned int BluetoothStackID, unsigned int OTP_ID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Abort_Response

etOTP_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 708 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Connect_Response

Respond to the OTP client for a Connect command.

Prototype:

int BTPSAPI OTP_Connect_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Boolean_t Accept, OTP_Digest_Challenge_t *DigestChallenge,

OTP_Digest_Response_t *DigestResponse);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Accept Whether to accept the connection or not.

DigestChallenge With DigestResponse are used for authentification. If

authentification is not being used, both parameters are set to

NULL. See The OTP_Client_Connect() command for

information the data structure of this parameter.

DigestResponse See The OTP_Client_Connect() command for information the

data structure of this parameter.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_ALREADY_CONNECTED

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 709 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Get_Directory_Request_Response

Respond to the OTP client for a Get Directory command.

Prototype:

int BTPSAPI OTP_Get_Directory_Request_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, OTP_DirectoryInfo_t *DirInfo, Byte_t ResponseCode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

DirInfo The parameter DirEntry is a pointer to an array of directory

entrystructures. Each entry in the array contains information

about a file or directory entry that is to be sent in response to the

request. It is important to note that the stack receives the

directory information as an array of structures, and will convert

this information into XML format prior to sending to

information to the remote client. The process of converting the

data to XML and sending all of the information to the remote

client may require multiple requests and responses from the

client and server. The lower layer stack will handle all of these

additionaltransactions without any further interaction from the

application. Since the directory transfer process may take some

time to complete, the data pointed to by the parameter DirInfo

must be preserved until the transfer process is complete. When

the DirInfo information is no longer needed by the lower stack,

a Callback will be generated with the

etOTP_Free_Directory_Information event to inform the

application that the directory transfer process is complete and

the data can be freed. The structures used for this parameter are

defined as follows:

typedef struct

{

 Boolean_t ParentDirectory;

 unsigned int NumberEntries;

 OTP_ObjectInfo_t *ObjectInfo;

} OTP_DirectoryInfo_t;

Where ObjectInfo is an array of the following structures:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 710 of 737 January 10, 2014

typedef struct

{

 OTP_ObjectType_t ObjectType;

 Word_t FieldMask;

 unsigned int NameLength;

 char Name[OTP_OBJECT_INFO_MAXIMUM_NAME_LENGTH];

 unsigned int Size;

 unsigned int TypeLength;

 char Type[OTP_OBJECT_INFO_MAXIMUM_TYPE_LENGTH];

 OTP_TimeDate_t Modified;

 OTP_TimeDate_t Created;

 OTP_TimeDate_t Accessed;

 Word_t Permission;

 unsigned int OwnerLength;

 char Owner[OTP_OBJECT_INFO_MAXIMUM_OWNER_LENGTH];

 unsigned int GroupLength;

 char Group[OTP_OBJECT_INFO_MAXIMUM_GROUP_LENGTH];

} OTP_ObjectInfo_t;

Note the limits on the character arrays. The Bluetooth and

OBEX specifications do not impose a limit, but to accommodate

operating systems with memory limitations, this implement has

imposed the limits shown by the constants. Entries longer than

this will be truncated to the limits.

The ObjectType field can take on any of the following values:

otUnknown, otFolder, otFile, otvCard, otvCalander, otObject,

otFileFolder

The FieldMask field is an ORing of bits which indicate what

information has been filled in. The bitmask constants are:

OTP_OBJECT_INFO_MASK_CLEAR

OTP_OBJECT_INFO_MASK_NAME

OTP_OBJECT_INFO_MASK_SIZE

OTP_OBJECT_INFO_MASK_TYPE

OTP_OBJECT_INFO_MASK_MODIFIED

OTP_OBJECT_INFO_MASK_CREATED

OTP_OBJECT_INFO_MASK_ACCESSED

OTP_OBJECT_INFO_MASK_USER_PERMISSION

OTP_OBJECT_INFO_MASK_GROUP_PERMISSION

OTP_OBJECT_INFO_MASK_OTHER_PERMISSION

OTP_OBJECT_INFO_MASK_OWNER

OTP_OBJECT_INFO_MASK_GROUP

The Modified, Created, and Accessed date/time fields are

defined by the following structure, where time is on a 24-hr

clock and the UTC_Time flag indicates if the time is universal

time vs. local time.

typedef struct

{

 Word_t Year;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 711 of 737 January 10, 2014

 Word_t Month;

 Word_t Day;

 Word_t Hour;

 Word_t Minute;

 Word_t Second;

 Boolean_t UTC_Time;

} OTP_TimeDate_t;

The Permissions field is an ORing of bits from the following list

of defined permissions:

OTP_USER_PERMISSION_READ

OTP_USER_PERMISSION_WRITE

OTP_USER_PERMISSION_DELETE

OTP_GROUP_PERMISSION_READ

OTP_GROUP_PERMISSION_WRITE

OTP_GROUP_PERMISSION_DELETE

OTP_OTHER_PERMISSION_READ

OTP_OTHER_PERMISSION_WRITE

OTP_OTHER_PERMISSION_DELETE

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then the information pointed to by the DirInfo

parameter is considered invalid and the ResponseCode value

represents the OBEX result code that identifies the reason why

the request was not processed. The possible ResponseCode

values are listed earlier in this section (before the first

_Response) function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:
etOTP_Free_Directory_Information

etOTP_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 712 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Set_Path_Response

Respond to the OTP client for a Set Path command.

Prototype:

int BTPSAPI OTP_Set_Path_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Byte_t ResponseCode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. The possible ResponseCode

values are listed earlier in this section (before the first

_Response) function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 713 of 737 January 10, 2014

OTP_Abort_Response

Respond to the OTP client for an Abort command. Since it is impossible to refuse an

abort request, there are no additional parameters, like a ResponseCode. This response is

simply an acknowledgement.

Prototype:

int BTPSAPI OTP_Abort_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Get_Object_Response

Respond to the OTP client for a Get Object command, i.e., sent the Object.

Prototype:

int BTPSAPI OTP_Get_Object_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, unsigned int BytesToSend, unsigned int ResponseCode,

unsigned long UserInfo);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 714 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

BytestoSend When the request was made, the Server received a Get Request

event which included a pointer to a buffer where the data was to

be loaded. This buffer was referenced in the structure

OTP_Info_t. The number of bytes that was loaded into this

buffer is what is placed into BytestoSend.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then any other information is considered invalid and

the ResponseCode value represents the OBEX result code that

identifies the reason why the request was not processed. The

possible ResponseCode values are listed earlier in this section

(before the first _Response) function.

UserInfo A user-defined parameter that will be passed back in the next

Get Request event.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Delete_Object_Response

Respond to the OTP client for a Delete Object command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 715 of 737 January 10, 2014

Prototype:

int BTPSAPI OTP_Delete_Object_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Byte_t ResponseCode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then any other information is considered invalid and

the ResponseCode value represents the OBEX result code that

identifies the reason why the request was not processed. The

possible ResponseCode values are listed earlier in this section

(before the first _Response) function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Delete_Sync_Object_Response

Respond to the OTP client for a Delete Sync Object command.

Prototype:

int BTPSAPI OTP_Delete_Sync_Object_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Byte_t ResponseCode , char *UID, SyncAnchor_t *SyncAnchor);

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 716 of 737 January 10, 2014

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then any other information is considered invalid and

the ResponseCode value represents the OBEX result code that

identifies the reason why the request was not processed. The

possible ResponseCode values are listed earlier in this section

(before the first _Response) function.

UID A pointer to a NULL terminated ASCII string that specifies the

local UID of the Object that was deleted.

SyncAnchor A pointer to the SyncAnchor to return in the delete response

(either Change Count or Timestamp) . This structure is defined

as:

typedef struct

{

 Boolean_t TimestampUsed;

 OTP_TimeDate_t Timestamp;

 Boolean_t ChangeCountUsed;

 DWord_t ChangeCount;

} SyncAnchor_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 717 of 737 January 10, 2014

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Put_Object_Response

Respond to the OTP client for a Put Object command.

Prototype:

int BTPSAPI OTP_Put_Object_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Byte_t ResponseCode);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then any other information is considered invalid and

the ResponseCode value represents the OBEX result code that

identifies the reason why the request was not processed. The

possible ResponseCode values are listed earlier in this section

(before the first _Response) function.

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 718 of 737 January 10, 2014

OTP_Put_Sync_Object_Response

Respond to the OTP client for a Put Sync Object command.

Prototype:

int BTPSAPI OTP_Put_Sync_Object_Response(unsigned int BluetoothStackID,

unsigned int OTP_ID, Byte_t ResponseCode , char *UID, SyncAnchor_t *SyncAnchor);

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The OBEX connection on which to issue the request. This is

the value that was returned from the OTP_Open_Remote_Port()

function.

ResponseCode The parameter ResponseCode is used to notify the remote client

of its ability to satisfy the request. If the ResponseCode value is

non-Zero, then any other information is considered invalid and

the ResponseCode value represents the OBEX result code that

identifies the reason why the request was not processed. The

possible ResponseCode values are listed earlier in this section

(before the first _Response) function.

UID A pointer to a NULL terminated ASCII string that specifies the

local UID of the Object that was deleted.

SyncAnchor A pointer to the SyncAnchor to return in the delete response

(either Change Count or Timestamp). This structure is defined

as:

typedef struct

{

 Boolean_t TimestampUsed;

 OTP_TimeDate_t Timestamp;

 Boolean_t ChangeCountUsed;

 DWord_t ChangeCount;

} SyncAnchor_t;

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_RFCOMM_NOT_INITIALIZED

BTPS_ERROR_OTP_NOT_INITIALIZED

BTPS_ERROR_OTP_REQUEST_OUTSTANDING

BTPS_ERROR_OTP_ERROR_PARSING_DATA

BTPS_ERROR_OTP_NO_CONNECTION

BTPS_ERROR_OTP_ACTION_NOT_ALLOWED

Possible Events:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 719 of 737 January 10, 2014

etOTP_Port_Close_Indication

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Get_Server_Connection_Mode

This function is responsible for allowing a mechanism to query the OTP Port Server

Connection Mode.

Prototype:

int BTPSAPI OTP_Get_Server_Connection_Mode(unsigned int BluetoothStackID,

unsigned int OTP_ID, SPP_Server_Connection_Mode_t *ServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port this command applies to. This is the value that was

returned from the OTP_Open_Server_Port() function.

ServerConnectionMode Pointer to a variable to receive the current Server Connection

Mode. The following modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_OTP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

OTP_Set_Server_Connection_Mode

This function is responsible for allowing a mechanism to change the OTP Port Server

Connection Mode.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 720 of 737 January 10, 2014

Prototype:

int BTPSAPI OTP_Set_Server_Connection_Mode(unsigned int BluetoothStackID,

unsigned int OTP_ID, SPP_Server_Connection_Mode_t ServerConnectionMode)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_ID The port this command applies to. This is the value that was

returned from the OTP_Open_Server_Port() function.

ServerConnectionMode The new Server Connection Mode being set. The following

modes are currently defined.

smAutomaticAccept

smAutomaticReject

smManualAccept

Return:

Zero if successful.

An error code if negative; one of the following values:

BTPS_ERROR_INVALID_PARAMETER

BTPS_ERROR_INVALID_BLUETOOTH_STACK_ID

BTPS_ERROR_OTP_NOT_INITIALIZED

Possible Events:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.4.2 Response Codes for OTP Operations

The following codes are a direct mapping of the OBEX Response Codes. These are

possible values for a number of the following _Response functions as well as the event

handling structures described in section 3.4.3 .

OTP_CONTINUE_RESPONSE

OTP_OK_RESPONSE

OTP_CREATED_RESPONSE

OTP_ACCEPTED_RESPONSE

OTP_NON_AUTHORITATIVE_INFORMATION_RESPONSE

OTP_NO_CONTENT_RESPONSE

OTP_RESET_CONTENT_RESPONSE

OTP_PARTIAL_CONTENT_RESPONSE

OTP_MULTIPLE_CHOICES_RESPONSE

OTP_MOVED_PERMANETLY_RESPONSE

OTP_MOVED_TEMPORARILY_RESPONSE

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 721 of 737 January 10, 2014

OTP_SEE_OTHER_RESPONSE

OTP_NOT_MODIFIED_RESPONSE

OTP_USE_PROXY_RESPONSE

OTP_BAD_REQUEST_RESPONSE

OTP_UNAUTHORIZED_RESPONSE

OTP_PAYMENT_REQUIRED_RESPONSE

OTP_FORBIDDEN_RESPONSE

OTP_NOT_FOUND_RESPONSE

OTP_METHOD_NOT_ALLOWED_RESPONSE

OTP_NOT_ACCEPTABLE_RESPONSE

OTP_PROXY_AUTHENTICATION_REQUIRED_RESPONSE

OTP_REQUEST_TIMEOUT_RESPONSE

OTP_CONFLICT_RESPONSE

OTP_GONE_RESPONSE

OTP_LENGTH_REQUIRED_RESPONSE

OTP_PRECONDITION_FAILED_RESPONSE

OTP_REQUESTED_ENTITY_TOO_LARGE_RESPONSE

OTP_REQUESTED_URL_TOO_LARGE_RESPONSE

OTP_UNSUPORTED_MEDIA_TYPE_RESPONSE

OTP_INTERNAL_SERVER_ERROR_RESPONSE

OTP_NOT_IMPLEMENTED_RESPONSE

OTP_BAD_GATEWAY_RESPONSE

OTP_SERVICE_UNAVAILABLE_RESPONSE

OTP_GATEWAY_TIMEOUT_RESPONSE

OTP_HTTP_VERSION_NOT_SUPPORTED_RESPONSE

OTP_DATABASE_FULL_RESPONSE

OTP_DATABASE_LOCKED_RESPONSE

3.4.3 OTP Event Callback Protoype

The event callback functions mentioned in the OTP Open commands all accept the callback

function described by the following prototype.

OTP_Event_Callback_t

Prototype of callback function passed in one of the OTP open commands.

Prototype:

void (BTPSAPI *OTP_Event_Callback_t)(unsigned int BluetoothStackID,

OTP_Event_Data_t *OTP_Event_Data, unsigned long CallbackParameter)

Parameters:

BluetoothStackID
1
 Unique identifier assigned to this Bluetooth Protocol Stack via a

call to BSC_Initialize

OTP_Event_Data Data describing the event for which the callback function is

called. This is defined by the following struture:

typedef struct

{

 OTP_Event_Data_Type_t Event_Data_Type;

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 722 of 737 January 10, 2014

 Word_t Event_Data_Size;

 union

 {

 OTP_Port_Open_Indication_Data_t *OTP_Port_Open_Indication_Data;

 OTP_Port_Open_Confirmation_Data_t *OTP_Port_Open_Confirmation_Data;

 OTP_Port_Close_Indication_Data_t *OTP_Port_Close_Indication_Data;

 OTP_Connect_Request_Data_t *OTP_Connect_Request_Data;

 OTP_Connect_Response_Data_t *OTP_Connect_Response_Data;

 OTP_Disconnect_Request_Data_t *OTP_Disconnect_Request_Data;

 OTP_Disconnect_Response_Data_t *OTP_Disconnect_Response_Data;

 OTP_Set_Path_Request_Data_t *OTP_Set_Path_Request_Data;

 OTP_Set_Path_Response_Data_t *OTP_Set_Path_Response_Data;

 OTP_Abort_Request_Data_t *OTP_Abort_Request_Data;

 OTP_Abort_Response_Data_t *OTP_Abort_Response_Data;

 OTP_Get_Directory_Request_Data_t *OTP_Get_Directory_Request_Data;

 OTP_Get_Directory_Response_Data_t *OTP_Get_Directory_Response_Data;

 OTP_Put_Object_Request_Data_t *OTP_Put_Object_Request_Data;

 OTP_Put_Object_Response_Data_t *OTP_Put_Object_Response_Data;

 OTP_Get_Object_Request_Data_t *OTP_Get_Object_Request_Data;

 OTP_Get_Object_Response_Data_t *OTP_Get_Object_Response_Data;

 OTP_Delete_Object_Request_Data_t *OTP_Delete_Object_Request_Data;

 OTP_Delete_Object_Response_Data_t *OTP_Delete_Object_Response_Data;

 OTP_Free_Directory_Information_Data_t *OTP_Free_Directory_Information_Data;

 OTP_Port_Open_Request_Indication_Data_t *OTP_Port_Open_Request_Indication_Data;

 } Event_Data;

} OTP_Event_Data_t;

where, Event_Data_Type is one of the enumerations of the event

types listed in the table in section 3.4.3, and each data structure

in the union is described with its event in that section as well.

CallbackParameter User-defined parameter (e.g., tag value) that was defined in the

callback registration.

Return:

Notes:

1. The BluetoothStackID parameter is not included in versions of Bluetopia that have been

optimized to only control a single Bluetooth device, such as some embedded versions of

Bluetopia. Please refer to the appropriate header file to determine if this parameter is part

of the function call or not.

3.4.4 OTP Events

The possible OTP events from the Bluetooth stack are listed in the table below and are described

in the text which follows:

Event Description

etOTP_Port_Open_Indication Indicate that a Remote Port Open connection has been

made

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 723 of 737 January 10, 2014

etOTP_Port_Open_Confirmation Confirm that a Port Open request has been responded

to or has errored out

etOTP_Port_Open_Request_Indication Indicate that a Remote Port Open request has been

received

etOTP_Port_Close_Port_Indication Indicate that a port has been closed (unregistered)

etOTP_Connect_Request Indicate that a Connect Request has been received

etOTP_Connect_Response Indicate that a Connect Response has been received

etOTP_Disconnect_Request Indicate that a Disconnect Request has been received

etOTP_Disconnect_Response Indicate that a Disconnect Response has been received

etOTP_Set_Path_Request Indicate that a Set Path Request has been received

etOTP_Set_Path_Response Indicate that a Set Path Response has been received

etOTP_Abort_Request Indicate that a Abort Request has been received

etOTP_Abort_Response Indicate that a Abort Response has been received

etOTP_Delete_Object_Request Indicate that a Delete Object Request has been

received

etOTP_Delete_Sync_Object_Request Indicate that a Delete Sync Object Request has been

received

etOTP_Delete_Object_Response Indicate that a Delete Object Response has been

received

etOTP_Delete_Sync_Object_Response Indicate that a Delete Sync Object Response has been

received

etOTP_Put_Object_Request Indicate that a Put Object Request has been received

etOTP_Put_Sync_Object_Request Indicate that a Put sync Object Request has been

received

etOTP_Put_Object_Response Indicate that a Put Object Response has been received

etOTP_Put_Sync_Object_Response Indicate that a Put Sync Object Response has been

received

etOTP_Get_Object_Request Indicate that a Get Object Request has been received

etOTP_Get_Object_Response Indicate that a Get Object Response has been received

etOTP_Get_Directory_Request Indicate that a Get Directory Request has been

received

etOTP_Get_Directory_Response Indicate that a Get Directory Response has been

received

etOTP_Free_Directory_Information Indicate that it is now safe to free up the DirInfo data

provided in OTP_Get_Directory_Response()

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 724 of 737 January 10, 2014

Several of the events return a Response_Code. These are listed just before the first _Response

function in the section 3.4.1 .

etOTP_Port_Open_Indication

Indicate that a Remote Port Open connection has been made.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 BD_ADDR_t BD_ADDR;

} OTP_Port_Open_Indication_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

BD_ADDR Address of the Bluetooth device.

etOTP_Port_Open_Confirmation

Confirm that a Port Open request has been responded to or has errored out.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 unsigned int PortOpenStatus;

} OTP_Port_Open_Confirmation_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

PortOpenStatus Status of the request. May be one of the following values:

OTP_OPEN_PORT_STATUS_SUCCESS

OTP_OPEN_PORT_STATUS_CONNECTION_TIMEOUT

OTP_OPEN_PORT_STATUS_CONNECTION_REFUSED

OTP_OPEN_PORT_STATUS_UNKNOWN_ERROR

etOTP_Port_Open_Request_Indication

Indicate that a Remote Port Open request has been received.

Notes:

1. When using this feature Bluetopia requires that a response be sent to a device

requesting a connection within sixty seconds. If a response is not sent within this time

a negative response will be sent to the device. Since this timeout is implementation

specific the requesting device may timeout and disconnect sooner then Bluetopia.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 725 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 BD_ADDR_t BD_ADDR;

} OTP_Port_Open_Request_Indication_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

BD_ADDR Address of the Bluetooth device.

etOTP_Port_Close_Port_Indication

Indicate that a port has been closed (unregistered).

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 unsigned long UserInfo;

} OTP_Port_Close_Indication_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

UserInfo User-define value passed in the command.

etOTP_Connect_Request

Indicate that a Connect Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 OTP_Target_t Target;

 OTP_Digest_Challenge_t *DigestChallenge;

 OTP_Digest_Response_t *DigestResponse;

} OTP_Connect_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

Target The service which is being requested. May be one of the

following values:

tUnknown

tInbox

tFileBrowser

tIRSync

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 726 of 737 January 10, 2014

DigestChallenge With DigestResponse are used for authentification. If

authentification is not being used, both parameters are set to

NULL. See The OTP_Client_Connect() command for

information the data structure of this parameter.

DigestResponse See The OTP_Client_Connect() command for information the

data structure of this parameter.

etOTP_Connect_Response

Indicate that a Connect Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

 OTP_Target_t Target;

 OTP_Digest_Challenge_t *DigestChallenge;

 OTP_Digest_Response_t *DigestResponse;

} OTP_Connect_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

Target The service which is being requested. May be one of the

following values:

tUnknown

tInbox

tFileBrowser

tIRSync

DigestChallenge With DigestResponse are used for authentification. If

authentification is not being used, both parameters are set to

NULL. See The OTP_Client_Connect() command for

information the data structure of this parameter.

DigestResponse See The OTP_Client_Connect() command for information the

data structure of this parameter.

etOTP_Disconnect_Request

Indicate that a Disconnect Request has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 727 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 unsigned long UserInfo;

} OTP_Disconnect_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

UserInfo User-defined value that was possibly passed in the currently

executing Request Command.

etOTP_Disconnect_Response

Indicate that a Disconnect Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

} OTP_Disconnect_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

etOTP_Set_Path_Request

Indicate that a Set Path Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Boolean_t Backup;

 Boolean_t Create;

 char *Folder;

} OTP_Set_Path_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

Backup Whether to go back up one level in the directory tree. If

present, the Folder field is ignored.

Create Whether to allow the folder (sub-directory) to be created if it

doesn’t exist.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 728 of 737 January 10, 2014

Folder A pointer to the NULL terminated name of the folder (sub-

directory) to change to, relative to the current directory.

etOTP_Set_Path_Response

Indicate that a Set Path Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

} OTP_Set_Path_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

etOTP_Abort_Request

Indicate that a Abort Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 unsigned long UserInfo;

} OTP_Abort_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

UserInfo User-defined value that was possibly passed in the currently

executing Request Command.

etOTP_Abort_Response

Indicate that a Abort Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

} OTP_Abort_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 729 of 737 January 10, 2014

ResponseCode Returned response. See the list of response codes in section

3.4.2.

etOTP_Delete_Object_Request

Indicate that a Delete Object Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 OTP_ObjectInfo_t ObjectInfo;

} OTP_Delete_Object_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ObjectInfo Information on the object to be deleted. See the description in

the OTP_Get_Directory_Request_Response() function.

etOTP_Delete_Sync_Object_Request

Indicate that a Delete Object Sync Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 OTP_Sync_Request_Params_t SyncParams;

 OTP_ObjectInfo_t ObjectInfo;

} OTP_Delete_Sync_Object_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

SyncParams Synchronization information regarding the item that is being

deleted. This structure is defined as:

typedef struct

{

 Boolean_t HardDelete;

 SyncAnchor_t SyncAnchor;

} OTP_Sync_Request_Params_t;

ObjectInfo Information on the object to be deleted. See the description in

the OTP_Get_Directory_Request_Response() function.

etOTP_Delete_Object_Response

Indicate that a Delete Object Response has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 730 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

} OTP_Delete_Object_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

etOTP_Delete_Sync_Object_Response

Indicate that a Delete Object Sync Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 OTP_Sync_Response_Params_t SyncParams;

 OTP_ObjectInfo_t ObjectInfo;

} OTP_Delete_Sync_Object_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

SyncParams Synchronization information regarding the item that was

deleted. This structure is defined as:

typedef struct

{

 SyncAnchor_t SyncAnchor;

 Byte_t UID[OTP_SYNC_UID_MAXIMUM_LENGTH];

} OTP_Sync_Response_Params_t;

ObjectInfo Information on the object to be deleted. See the description in

the OTP_Get_Directory_Request_Response() function.

etOTP_Put_Object_Request

Indicate that a Put Object Request has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 731 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t Phase;

 OTP_ObjectInfo_t ObjectInfo;

 unsigned int DataLength;

 Byte_t *DataPtr;

 unsigned long UserInfo;

} OTP_Put_Object_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

Phase Indicates whether this is the first request, continuation, or the

final Request in the Put Object Transaction. Possible values

are:

OTP_OBJECT_PHASE_FIRST

OTP_OBJECT_PHASE_LAST

OTP_OBJECT_PHASE_CONTINUE

ObjectInfo Information on the object to put. See the description in the

OTP_Get_Directory_Request_Response() function.

DataLength Length of the buffer pointed to by Data.

Data Pointer to a buffer to containing the actual object data.

UserInfo User-defined value that was passed in the command.

etOTP_Put_Sync_Object_Request

Indicate that a Put Sync Object Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t Phase;

 OTP_ObjectInfo_t ObjectInfo;

 OTP_Sync_Request_Params_t SyncParams;

 unsigned int DataLength;

 Byte_t *DataPtr;

 unsigned long UserInfo;

} OTP_Put_Sync_Object_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

Phase Indicates whether this is the first request, continuation, or the

final Request in the Put Object Transaction. Possible values

are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 732 of 737 January 10, 2014

OTP_OBJECT_PHASE_FIRST

OTP_OBJECT_PHASE_LAST

OTP_OBJECT_PHASE_CONTINUE

ObjectInfo Information on the object to put. See the description in the

OTP_Get_Directory_Request_Response() function.

SyncParams Synchronization information regarding the item that is being

deleted. This structure is defined as:

typedef struct

{

 Boolean_t HardDelete;

 SyncAnchor_t SyncAnchor;

} OTP_Sync_Request_Params_t;

DataLength Length of the buffer pointed to by Data.

Data Pointer to a buffer to containing the actual object data.

UserInfo User-defined value that was passed in the command.

etOTP_Put_Object_Response

Indicate that a Put Object Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

 unsigned int BufferSize;

 unsigned long UserInfo;

} OTP_Put_Object_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

BufferSize Amount of data that can be accepted in the buffer when sending

the next Put Object Request.

UserInfo User-defined value that was passed in the command.

etOTP_Put_Sync_Object_Response

Indicate that a Put Sync Object Response has been received.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 733 of 737 January 10, 2014

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

 unsigned int BufferSize;

 unsigned long UserInfo;

} OTP_Put_Sync_Object_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

SyncParams Synchronization information regarding the item that was put.

This structure is defined as:

typedef struct

{

 SyncAnchor_t SyncAnchor;

 Byte_t UID[OTP_SYNC_UID_MAXIMUM_LENGTH];

} OTP_Sync_Response_Params_t;

BufferSize Amount of data that can be accepted in the buffer when sending

the next Put Object Request.

UserInfo User-defined value that was passed in the command.

etOTP_Get_Object_Request

Indicate that a Get Object Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t Phase;

 OTP_ObjectInfo_t ObjectInfo;

 unsigned int BufferSize;

 Byte_t *BufferPtr;

 unsigned long UserInfo;

} OTP_Get_Object_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

Phase Indicates whether this is the first request, continuation, or the

final Request in the Get Object Transaction. Possible values

are:

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 734 of 737 January 10, 2014

OTP_OBJECT_PHASE_FIRST

OTP_OBJECT_PHASE_LAST

OTP_OBJECT_PHASE_CONTINUE

ObjectInfo Information on the directory to get the listing for. See the

description in the OTP_Get_Directory_Request_Response()

function.

BufferSize Amount of data that can be accepted in the buffer when sending

the next Get Object Request.

Buffer Pointer to a buffer to return the object data in.

UserInfo User-defined value that was passed in the command.

etOTP_Get_Object_Response

Indicate that a Get Object Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

 Byte_t Phase;

 OTP_ObjectInfo_t ObjectInfo;

 unsigned int BufferSize;

 Byte_t *BufferPtr;

 unsigned long UserInfo;

} OTP_Get_Object_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

Phase Indicates whether this is the first request, continuation, or the

final Request in the Get Object Transaction. Possible values

are:

OTP_OBJECT_PHASE_FIRST

OTP_OBJECT_PHASE_LAST

OTP_OBJECT_PHASE_CONTINUE

ObjectInfo Information on the directory to get the listing for. See the

description in the OTP_Get_Directory_Request_Response()

function.

BufferSize Length of the buffer pointed to by Buffer.

Buffer Pointer to a buffer to return the object data in.

UserInfo User-defined value that was passed in the command.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 735 of 737 January 10, 2014

etOTP_Get_Directory_Request

Indicate that a Get Directory Request has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 unsigned int NameLength;

 char *Name;

} OTP_Get_Directory_Request_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

NameLength Length of the Name string;

Name Name of the directory to retrieve the listing for. This is a sub-

directory relative to the current path.

etOTP_Get_Directory_Response

Indicate that a Get Directory Response has been received.

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 Byte_t ResponseCode;

 Byte_t Phase;

 OTP_DirectoryInfo_t DirInfo;

} OTP_Get_Directory_Response_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

ResponseCode Returned response. See the list of response codes in section

3.4.2.

Phase Indicates whether this is the first request, continuation, or the

final Request in the Get Directory Transaction. Possible values

are:

OTP_OBJECT_PHASE_FIRST

OTP_OBJECT_PHASE_LAST

OTP_OBJECT_PHASE_CONTINUE

DirInfo Information that is returned. See the description in the

OTP_Get_Directory_Response() function.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 736 of 737 January 10, 2014

etOTP_Free_Directory_Information

Indicate that it is now safe to free up the DirInfo data provided in

OTP_Get_Directory_Response().

Return Structure:

typedef struct

{

 unsigned int OTP_ID;

 OTP_DirectoryInfo_t DirectoryInfo;

} OTP_Free_Directory_Information_Data_t;

Event Parameters:

OTP_ID Identifier of the OTP server connection.

DirectoryInfo Pointer to the data that can be freed up. This value is the

DirectoryInfo pointer that was passed into the OTP module

when the Directory Respnonse was submitted.

Bluetopia
®
 Protocol Stack API Reference Manual Release 4.0.1

Stonestreet One Page 737 of 737 January 10, 2014

4. File Distributions

The header files that are distributed with the Bluetooth Stack library are listed in the table below.

File Contents/Description

BSCAPI.h Bluetooth Stack Controller API definitions

BTAPITyp.h Definition of API calling convention (symbol BTPSAPI)

BTErrors.h Definition of error codes (BTPS_ERROR_... constants)

BTPSCFG.h Prebuilt Bluetooth Stack configuration definitions

BTTypes.h General Bluetooth type definitions

GAPAPI.h Generic Access Profile API definitions

GOEPAPI.h Generic Object Exchange Profile API definitions

HCIAPI.h Host Controller Interface API definitions

HCICommT.h Serial Comm port types for the HCI layer implementation

HCITypes.h Supporting types, macros and constants for the HCI API

HCIUSBT.h Universal Serial Bus types for the HCI layer implementation

L2CAPAPI.h Logical Link Control and Adaption Protocol API definitions

L2CAPTyp.h Supporting types, macros and constants for the L2CAP API

OBXTypes.h Supporting types, macros and constants for OBEX API.

OTPAPI.h Object Transfer Protocol API definitions.

RFCOMAPI.h Radio Frequency Communications API definitions

RFCOMMT.h Supporting types, macros and constants for the RFCOMM API

SCOAPI.H Sychronous Connection-Oriented API definitions

SDPAPI.H Service Discovery Protocol API definitions

SDPTypes.h Supporting types, macros and constants for the SDP API

SMTypes.h Supporting types, macros, and constants for LE security

manager

SPPAPI.h Serial Port Profile API definitions

SS1BTPS.h Bluetooth Protocol Stack Include file

	1. Introduction
	1.1 Scope
	1.2 Applicable Documents
	1.3 Acronyms and Abbreviations

	2. Stack Application Programming Interface
	2.1 BSC (Bluetooth Stack Controller) API
	2.1.1 BSC Callbacks
	BSC_Timer_Callback_t
	BSC_Debug_Callback_t
	BSC_Cleanup_Callback_t
	BSC_Event_Callback_t
	BSC_AsynchronousCallbackFunction_t

	2.1.2 BSC Commands
	BSC_Initialize
	BSC_Shutdown
	BSC_RegisterDebugCallback
	BSC_UnRegisterDebugCallback
	BSC_RegisterEventCallback
	BSC_UnRegisterEventCallback
	BSC_LockBluetoothStack
	BSC_UnLockBluetoothStack
	BSC_StartTimer
	BSC_StopTimer
	BSC_AuthenticateDevice
	BSC_EnableFeature
	BSC_DisableFeature
	BSC_QueryActiveFeatures
	BSC_QueryStackIdle
	BSC_ScheduleAsynchronousCallback
	BSC_AcquireListLock
	BSC_ReleaseListLock
	BSC_AddGenericListEntry_Actual
	BSC_AddGenericListEntry
	BSC_SearchGenericListEntry
	BSC_GetNextGenericListEntry
	BSC_DeleteGenericListEntry
	BSC_FreeGenericListEntryMemory
	BSC_DeleteGenericListEntryList

	2.2 HCI API
	2.2.1 HCI Error Codes
	Bluetooth Version 1.0B
	Bluetooth Version 1.1
	Bluetooth Version 1.2
	Bluetooth Version 2.1
	Bluetooth Version 3.0
	Bluetooth Version 4.0

	2.2.2 Link Control Commands
	HCI_Inquiry
	HCI_Inquiry_Cancel
	HCI_Periodic_Inquiry_Mode
	HCI_Exit_Periodic_Inquiry_Mode
	HCI_Create_Connection
	HCI_Disconnect
	HCI_Add_SCO_Connection
	HCI_Accept_Connection_Request
	HCI_Reject_Connection_Request
	HCI_Link_Key_Request_Reply
	HCI_Link_Key_Request_Negative_Reply
	HCI_PIN_Code_Request_Reply
	HCI_PIN_Code_Request_Negative_Reply
	HCI_Change_Connection_Packet_Type
	HCI_Authentication_Requested
	HCI_Set_Connection_Encryption
	HCI_Change_Connection_Link_Key
	HCI_Master_Link_Key
	HCI_Remote_Name_Request
	HCI_Read_Remote_Supported_Features
	HCI_Read_Remote_Version_Information
	HCI_Read_Clock_Offset
	HCI_Create_Connection_Cancel
	HCI_Remote_Name_Request_Cancel
	HCI_Read_Remote_Extended_Features
	HCI_Read_LMP_Handle
	HCI_Setup_Synchronous_Connection
	HCI_Accept_Synchronous_Connection_Request
	HCI_Reject_Synchronous_Connection_Request
	HCI_IO_Capability_Request_Reply
	HCI_User_Confirmation_Request_Reply
	HCI_User_Confirmation_Request_Negative_Reply
	HCI_User_Passkey_Request_Reply
	HCI_User_Passkey_Request_Negative_Reply
	HCI_Remote_OOB_Data_Request_Reply
	HCI_Remote_OOB_Data_Request_Negative_Reply
	HCI_IO_Capability_Request_Negative_Reply
	HCI_Create_Physical_Link
	HCI_Accept_Physical_Link_Request
	HCI_Disconnect_Physical_Link
	HCI_Create_Logical_Link
	HCI_Accept_Logical_Link
	HCI_Disconnect_Logical_Link
	HCI_Logical_Link_Cancel
	HCI_Flow_Spec_Modify

	2.2.3 Link Policy Commands
	HCI_Hold_Mode
	HCI_Sniff_Mode
	HCI_Exit_Sniff_Mode
	HCI_Park_Mode
	HCI_Exit_Park_Mode
	HCI_QoS_Setup
	HCI_Role_Discovery
	HCI_Switch_Role
	HCI_Read_Link_Policy_Settings
	HCI_Write_Link_Policy_Settings
	HCI_Read_Default_Link_Policy_Settings
	HCI_Write_Default_Link_Policy_Settings
	HCI_Flow_Specification
	HCI_Sniff_Subrating

	2.2.4 Host Controller & Baseband Commands
	HCI_Set_Event_Mask
	HCI_Reset
	HCI_Set_Event_Filter
	HCI_Flush
	HCI_Read_PIN_Type
	HCI_Write_PIN_Type
	HCI_Create_New_Unit_Key
	HCI_Read_Stored_Link_Key
	HCI_Write_Stored_Link_Key
	HCI_Delete_Stored_Link_Key
	HCI_Change_Local_Name
	HCI_Read_Local_Name
	HCI_Read_Connection_Accept_Timeout
	HCI_Write_Connection_Accept_Timeout
	HCI_Read_Page_Timeout
	HCI_Write_Page_Timeout
	HCI_Read_Scan_Enable
	HCI_Write_Scan_Enable
	HCI_Read_Page_Scan_Activity
	HCI_Write_Page_Scan_Activity
	HCI_Read_Inquiry_Scan_Activity
	HCI_Write_Inquiry_Scan_Activity
	HCI_Read_Authentication_Enable
	HCI_Write_Authentication_Enable
	HCI_Read_Encryption_Mode
	HCI_Write_Encryption_Mode
	HCI_Read_Class_of_Device
	HCI_Write_Class_of_Device
	HCI_Read_Voice_Setting
	HCI_Write_Voice_Setting
	HCI_Read_Automatic_Flush_Timeout
	HCI_Write_Automatic_Flush_Timeout
	HCI_Read_Num_Broadcast_Retransmissions
	HCI_Write_Num_Broadcast_Retransmissions
	HCI_Read_Hold_Mode_Activity
	HCI_Write_Hold_Mode_Activity
	HCI_Read_Transmit_Power_Level
	HCI_Read_SCO_Flow_Control_Enable
	HCI_Write_SCO_Flow_Control_Enable
	HCI_Set_Host_Controller_To_Host_Flow_Control
	HCI_Host_Buffer_Size
	HCI_Host_Number_Of_Completed_Packets
	HCI_Read_Link_Supervision_Timeout
	HCI_Write_Link_Supervision_Timeout
	HCI_Read_Number_Of_Supported_IAC
	HCI_Read_Current_IAC_LAP
	HCI_Write_Current_IAC_LAP
	HCI_Read_Page_Scan_Period_Mode
	HCI_Write_Page_Scan_Period_Mode
	HCI_Read_Page_Scan_Mode
	HCI_Write_Page_Scan_Mode
	HCI_Set_AFH_Host_Channel_Classification
	HCI_Read_Inquiry_Scan_Type
	HCI_Write_Inquiry_Scan_Type
	HCI_Read_Inquiry_Mode
	HCI_Write_Inquiry_Mode
	HCI_Read_Page_Scan_Type
	HCI_Write_Page_Scan_Type
	HCI_Read_AFH_Channel_Assessment_Mode
	HCI_Write_AFH_Channel_Assessment_Mode
	HCI_Read_Extended_Inquiry_Response
	HCI_Write_Extended_Inquiry_Response
	HCI_Refresh_Encryption_Key
	HCI_Read_Simple_Pairing_Mode
	HCI_Write_Simple_Pairing_Mode
	HCI_Read_Local_OOB_Data
	HCI_Read_Inquiry_Response_Transmit_Power_Level
	HCI_Write_Inquiry_Transmit_Power_Level
	HCI_Send_Keypress_Notification
	HCI_Read_Default_Erroneous_Data_Reporting
	HCI_Write_Default_Erroneous_Data_Reporting
	HCI_Enhanced_Flush
	HCI_Read_Logical_Link_Accept_Timeout
	HCI_Write_Logical_Link_Accept_Timeout
	HCI_Set_Event_Mask_Page_2
	HCI_Read_Location_Data
	HCI_Write_Location_Data
	HCI_Read_Flow_Control_Mode
	HCI_Write_Flow_Control_Mode
	HCI_Read_Enhanced_Transmit_Power_Level
	HCI_Read_Best_Effort_Flush_Timeout
	HCI_Write_Best_Effort_Flush_Timeout
	HCI_Short_Range_Mode
	HCI_Read_LE_Host_Supported
	HCI_Write_LE_Host_Supported

	2.2.5 Informational Parameters
	HCI_Read_Local_Version_Information
	HCI_Read_Local_Supported_Features
	HCI_Read_Buffer_Size
	HCI_Read_Country_Code
	HCI_Read_BD_ADDR
	HCI_Read_Local_Supported_Commands
	HCI_Read_Local_Extended_Features
	HCI_Read_Data_Block_Size

	2.2.6 Status Parameters
	HCI_Read_Failed_Contact_Counter
	HCI_Reset_Failed_Contact_Counter
	HCI_Get_Link_Quality
	HCI_Read_RSSI
	HCI_Read_AFH_Channel_Map
	HCI_Read_Clock
	HCI_Read_Encryption_Key_Size
	HCI_Read_Local_AMP_Info
	HCI_Read_Local_AMP_ASSOC
	HCI_Write_Remote_AMP_ASSOC

	2.2.7 Testing Commands
	HCI_Read_Loopback_Mode
	HCI_Write_Loopback_Mode
	HCI_Enable_Device_Under_Test_Mode
	HCI_Write_Simple_Pairing_Debug_Mode
	HCI_Enable_AMP_Receiver_Reports
	HCI_AMP_Test_End
	HCI_AMP_Test_Command

	2.2.8 LE Controller Commands
	HCI_LE_Set_Event_Mask
	HCI_LE_Read_Buffer_Size
	HCI_LE_Read_Local_Supported_Features
	HCI_LE_Set_Random_Address
	HCI_LE_Set_Advertising_Parameters
	HCI_LE_Read_Advertising_Channel_Tx_Power
	HCI_LE_Set_Advertising Data
	HCI_LE_Set_Scan_Response_Data
	HCI_LE_Set_Advertise_Enable
	HCI_LE_Set_Scan_Parameters
	HCI_LE_Set_Scan_Enable
	HCI_LE_Create_Connection
	HCI_LE_Create_Connection_Cancel
	HCI_LE_Read_White_List_Size
	HCI_LE_Clear_White_List
	HCI_LE_Add_Device_To_White_List
	HCI_LE_Remove-Device_From_White_List
	HCI_LE_Connection_Update
	HCI_LE_Set_Host_Channel_Classifaction
	HCI_LE_Read_Channel_Map
	HCI_LE_Read_Remote_Used_Features
	HCI_LE_Encrypt
	HCI_LE_Rand
	HCI_LE_Start_Encryption
	HCI_LE_Long_Term_Key_Request_Reply
	HCI_LE_Long_Term_Key_Request_Negative_Key_Reply
	HCI_LE_Read_Supported_States
	HCI_LE_Receiver_Test_Command
	HCI_LE_Transmitter_Test
	HCI_LE_Test_End

	2.2.9 Miscellaneous Commands/Parameters
	HCI_Version_Supported
	HCI_Command_Supported
	HCI_Send_Raw_Command
	HCI_Send_ACL_Data
	HCI_Send_SCO_Data
	HCI_Change_SCO_Configuration
	HCI_Reconfigure_Driver
	HCI_Set_Host_Flow_Control
	HCI_Query_Host_Flow_Control

	2.2.10 HCI Event/Data Callbacks and Registration
	HCI_Event_Callback_t
	HCI_ACL_Data_Callback_t
	HCI_SCO_Data_Callback_t
	HCI_Register_Event_Callback
	HCI_Register_ACL_Data_Callback
	HCI_Register_SCO_Data_Callback
	HCI_Un_Register_Callback

	2.2.11 HCI Events
	etInquiry_Complete_Event
	etInquiry_Result_Event
	etConnection_Complete_Event
	etConnection_Request_Event
	etDisconnection_Complete_Event
	etAuthentication_Complete_Event
	etRemote_Name_Request_Complete_Event
	etEncryption_Change_Event
	etChange_Connection_Link_Key_Complete_Event
	etMaster_Link_Key_Complete_Event
	etRead_Remote_Supported_Features_Complete_Event
	etRead_Remote_Version_Information_Complete_Event
	etQoS_Setup_Complete_Event
	etHardware_Error_Event
	etFlush_Occurred_Event
	etRole_Change_Event
	etNumber_Of_Completed_Packets_Event
	etMode_Change_Event
	etReturn_Link_Keys_Event
	etPIN_Code_Request_Event
	etLink_Key_Request_Event
	etLink_Key_Notification_Event
	etLoopback_Command_Event
	etData_Buffer_Overflow_Event
	etMax_Slots_Change_Event
	etRead_Clock_Offset_Complete_Event
	etConnection_Packet_Type_Changed_Event
	etQoS_Violation_Event
	etPage_Scan_Mode_Change_Event
	etPage_Scan_Repetition_Mode_Change_Event
	etFlow_Specification_Complete_Event
	etInquiry_Result_With_RSSI_Event
	etRead_Remote_Extended_Features_Complete_Event
	etSynchronous_Connection_Complete_Event
	etSynchronous_Connection_Changed_Event
	etSniff_Subrating_Event
	etExtended_Inquiry_Result_Event
	etEncryption_Key_Refresh_Complete_Event
	etIO_Capability_Request_Event
	etIO_Capability_Response_Event
	etUser_Confirmation_Request_Event
	etUser_Passkey_Request_Event
	etRemote_OOB_Data_Request_Event
	etSimple_Pairing_Complete_Event
	etLink_Supervision_Timeout_Changed_Event
	etEnhanced_Flush_Complete_Event
	etUser_Passkey_Notification_Event
	etKeypress_Notification_Event
	etRemote_Host_Supported_Features_Notification_Event
	etPhysical_Link_Complete_Event
	etChannel_Selected_Event
	etDisconnection_Physical_Link_Complete_Event
	etPhysical_Link_Loss_Early_Warning_Event
	etPhysical_Link_Recovery_Event
	etLogical_Link_Complete_Event
	etDisconnection_Logical_Link_Complete_Event
	etFlow_Spec_Modify_Complete_Event
	etNumber_Of_Completed_Data_Blocks_Event
	etShort_Range_Mode_Change_Complete_Event
	etAMP_Status_Change_Event
	etAMP_Start_Test_Event
	etAMP_Test_End_Event
	etAMP_Receiver_Report_Event
	etPlatform_Specific_Event

	2.2.12 HCI LE Meta Event Sub-events
	meConnection_Complete_Event
	meAdvertising_Report_Event
	meConnection_Update_Complete_Event
	meRead_Remote_Used_Features_Complete_Event
	meLong_Term_Key_Request_Event

	2.3 L2CAP API
	2.3.1 L2CAP Service Primitives
	L2CA_Set_Timer_Values
	L2CA_Get_Timer_Values
	L2CA_Connect_Request
	L2CA_Connect_Response
	L2CA_Config_Request
	L2CA_Config_Response
	L2CA_Disconnect_Request
	L2CA_Disconnect_Response
	L2CA_Data_Write
	L2CA_Enhanced_Data_Write
	L2CA_Fixed_Channel_Data_Write
	L2CA_Enhanced_Fixed_Channel_Data_Write
	L2CA_Group_Data_Write
	L2CA_Ping
	L2CA_Get_Info
	L2CA_Connection_Parameter_Update_Request
	L2CA_Connection_Parameter_Update_Response
	L2CA_Group_Create
	L2CA_Group_Close
	L2CA_Group_Add_Member
	L2CA_Group_Remove_Member
	L2CA_Get_Group_Membership
	L2CA_Enable_CLT
	L2CA_Disable_CLT
	L2CA_Flush_Channel_Data
	L2CA_Get_Current_Channel_Configuration
	L2CA_Get_Link_Connection_Configuration
	L2CA_Set_Link_Connection_Configuration
	L2CA_Get_Link_Connection_State
	L2CA_Get_Channel_Queue_Threshold
	L2CA_Set_Channel_Queue_Threshold

	2.3.2 L2CAP Event Functions/Prototype
	L2CA_Register_PSM
	L2CA_Un_Register_PSM
	L2CA_Register_Fixed_Channel
	L2CA_Un_Register_Fixed_Channel
	L2CA_Event_Callback_t

	2.3.3 L2CAP Events
	etConnect_Indication
	etConnect_Confirmation
	etConfig_Indication
	etConfig_Confirmation
	etDisconnect_Indication
	etDisconnect_Confirmation
	etTimeout_Indication
	etEcho_Confirmation
	etInformation_Confirmation
	etData_Indication
	etData_Error_Indication
	etGroup_Data_Indication
	etGroup_Member_Status
	etChannel_Buffer_Empty_Indication
	etConnection_Parameter_Update_Indication
	etConnection_Parameter_Update_Confirmation
	etFixed_Channel_Connect_Indication
	etFixed_Channel_Disconnect_Indication
	etFixed_Channel_Data_Indication
	etFixed_Channel_Buffer_Empty_Indication

	2.4 SDP API
	2.4.1 Commonly Used SDP Data Types
	SDP_Data_Element_Type_t
	SDP_UUID_Entry_t
	SDP_Attribute_ID_List_Entry_t
	SDP_Data_Element_t
	SDP_Response_Data_Type_t
	SDP_Error_Response_Data_t

	2.4.2 SDP Event Callbacks
	SDP_Response_Callback_t
	SDP Response Data Structures
	SDP_Connection_Event_Callback_t
	SDP Connection Event Structures

	2.4.3 SDP Functions
	SDP_Create_Service_Record
	SDP_Update_Service_Record_Service_Class
	SDP_Delete_Service_Record
	SDP_Add_Attribute
	SDP_Add_Raw_Attribute
	SDP_Delete_Attribute
	SDP_Service_Search_Request
	SDP_Service_Attribute_Request
	SDP_Service_Attribute_Request_Raw
	SDP_Service_Search_Attribute_Request
	SDP_Service_Search_Attribute_Request_Raw
	SDP_Cancel_Service_Request
	SDP_Parse_Raw_Attribute_Response_Data
	SDP_Free_Parsed_Attribute_Response_Data
	SDP_Set_Disconnect_Mode
	SDP_Disconnect_Server
	SDP_Get_Server_Connection_Mode
	SDP_Set_Server_Connection_Mode
	SDP_Connect_Request_Response

	2.5 RFCOMM API
	2.5.1 RFCOMM Commands
	RFCOMM_Set_System_Parameters
	RFCOMM_Get_System_Parameters
	RFCOMM_Set_Data_Queuing_Parameters
	RFCOMM_Get_Data_Queuing_Parameters
	RFCOMM_Register_Server_Channel
	RFCOMM_Un_Register_Server_Channel
	RFCOMM_Open_Request
	RFCOMM_Open_Response
	RFCOMM_Release_Request
	RFCOMM_Send_Credits
	RFCOMM_Send_Data
	RFCOMM_Send_Data_With_Credits
	RFCOMM_Parameter_Negotiation_Response
	RFCOMM_Test_Request
	RFCOMM_Flow_Request
	RFCOMM_Modem_Status
	RFCOMM_Line_Status_Change
	RFCOMM_Remote_Port_Negotiation_Request
	RFCOMM_Remote_Port_Negotiation_Response
	RFCOMM_Query_Remote_Port_Negotiation
	RFCOMM_Get_Channel_Status
	RFCOMM_Query_Server_Channel_Present

	2.5.2 RFCOMM Event Callback
	RFCOMM_Event_Callback_t

	2.5.3 RFCOMM Events
	etOpen_Indication
	etOpen_Confirmation
	etRelease_Indication
	etDLCI_Data_Indication
	etDLCI_Param_Negotiation_Indication
	etRemote_Port_Negotiation_Indication
	etRemote_Port_Negotiation_Confirmation
	etRemote_Line_Status_Indication
	etRemote_Line_Status_Confirmation
	etRemote_Line_Status_Confirmation
	etModem_Status_Indication
	etModem_Status_Confirmation
	etTest_Confirmation
	etFlow_Indication
	etFlow_Confirmation
	etCredit_Indication
	etNon_Supported_Command_Indication
	etTransport_Buffer_Empty_Indication

	2.6 SCO API
	2.6.1 SCO Event/Data Callbacks and Registration
	SCO_Connect_Request_Callback_t
	SCO_Connection_Callback_t
	SCO_Register_Synchronous_Connect_Request_Callback
	SCO_Register_Connect_Request_Callback
	SCO_Un_Register_Callback

	2.6.2 SCO Commands
	SCO_Setup_Synchronous_Connection
	SCO_Add_Connection
	SCO_Close_Connection
	SCO_Accept_Synchronous_Connection
	SCO_Accept_Connection
	SCO_Modify_Synchronous_Connection
	SCO_Send_Data
	SCO_Set_Queue_Threshold
	SCO_Get_Queue_Threshold
	SCO_Query_Packet_Information
	SCO_Query_Data_Format
	SCO_Change_Data_Format
	SCO_Change_Buffer_Size
	SCO_Purge_Buffer
	SCO_Queue_Data
	SCO_Change_Packet_Information
	SCO_Set_Connection_Mode
	SCO_Set_Physical_Transport

	3. Profile Interfaces
	3.1 GAP Programming Interface
	3.1.1 Commonly Used GAP Data Types
	GAP_Authentication_Information_t
	GAP_LE_Authentication_Response_Information_t

	3.1.2 GAP Functions
	GAP_Set_Discoverability_Mode
	GAP_Query_Discoverability_Mode
	GAP_Set_Connectability_Mode
	GAP_Query_Connectability_Mode
	GAP_Set_Pairability_Mode
	GAP_Query_Pairability_Mode
	GAP_Set_Authentication_Mode
	GAP_Query_ Authentication _Mode
	GAP_Set_Encryption_Mode
	GAP_Cancel_Set_Encryption _Mode
	GAP_Query_Encryption_Mode
	GAP_Authenticate_Remote_Device
	GAP_Cancel_Authenticate_Remote_Device
	GAP_Register_Remote_Authentication
	GAP_Un_Register_Remote_Authentication
	GAP_Authentication_Response
	GAP_Perform_Inquiry
	GAP_Cancel_Inquiry
	GAP_Set_Inquiry_Mode
	GAP_Query_Inquiry_Mode
	GAP_Query_Remote_Device_Name
	GAP_Cancel_Query_Remote_Device_Name
	GAP_Query_Remote_Features
	GAP_Query_Remote_Version_Information
	GAP_Initiate_Bonding
	GAP_Cancel_Bonding
	GAP_End_Bonding
	GAP_Query_Local_BD_ADDR
	GAP_Set_Class_Of_Device
	GAP_Query_Class_Of_Device
	GAP_Set_Local_Device_Name
	GAP_Query_Local_Device_Name
	GAP_Disconnect_Link
	GAP_Query_Connection_Handle
	GAP_Query_Local_Out_Of_Band_Data
	GAP_Refresh_Encryption_Key
	GAP_Read_Extended_Inquiry_Information
	GAP_Write_Extended_Inquiry_Information
	GAP_Convert_Extended_Inquiry_Response_Data
	GAP_Parse_Extended_Inquiry_Response_Data
	GAP_LE_Create_Connection
	GAP_LE_Cancel_Create_Connection
	GAP_LE_Disconnect
	GAP_LE_Read_Remote_Features
	GAP_LE_Perform_Scan
	GAP_LE_Cancel_Scan
	GAP_LE_Set_Advertising_Data
	GAP_LE_Convert_Advertising_Data
	GAP_LE_Parse_Advertising_Data
	GAP_LE_Set_Scan_Response_Data
	GAP_LE_Convert_Scan_Response_Data
	GAP_LE_Parse_Scan_Response_Data
	GAP_LE_Advertising_Enable
	GAP_LE_Advertising_Disable
	GAP_LE_Generate_Non_Resolvable_Address
	GAP_LE_Generate_Static_Address
	GAP_LE_Generate_Resolvable_Address
	GAP_LE_Resolve_Address
	GAP_LE_Set_Random_Address
	GAP_LE_Add_Device_To_White_List
	GAP_LE_Remove_Device_From_White_List
	GAP_LE_Read_White_List_Size
	GAP_LE_Set_Pairability_Mode
	GAP_LE_Register_Remote_Authentication
	GAP_LE_Un_Register_Remote_Authentication
	GAP_LE_Pair_Remote_Device
	GAP_LE_Authentication_Response
	GAP_LE_Reestablish_Security
	GAP_LE_Request_Security
	GAP_LE_Set_Fixed_Passkey
	GAP_LE_Query_Encryption_Mode
	GAP_LE_Query_Connection_Handle
	GAP_LE_Query_Connection_Parameters
	GAP_LE_Generate_Long_Term_Key
	GAP_LE_Regenerate_Long_Term_Key
	GAP_LE_Diversify_Function
	GAP_LE_Connection_Parameter_Update_Request
	GAP_LE_Connection_Parameter_Update_Response
	GAP_LE_Update_Connection_Parameters

	3.1.3 GAP Event Callbacks
	GAP_Event_Callback_t
	GAP_LE_Event_Callback_t

	3.1.4 GAP Events
	etInquiry_Result
	etEncryption_Change_Result
	etAuthentication
	etRemote_Name_Result
	etInquiry_Entry_Result
	etInquiry_With_RSSI_Entry_Result
	etExtended_Inquiry_Entry_Result
	etEncryption_Refresh_Result
	etRemote_Features_Result
	etRemote_Version_Information_Result
	etLE_Remote_Features_Result
	etLE_Advertising_Report
	etLE_Connection_Complete
	etLE_Disconnection_Complete
	etLE_Encryption_Change
	etLE_Encryption_Refresh_Complete
	etLE_Authentication
	etLE_Connection_Parameter_Update_Request
	etLE_Connection_Parameter_Update_Response
	etLE_Connection_Parameter_Updated

	3.2 SPP Programming Interface
	3.2.1 SPP Commands
	SPP_Open_Server_Port
	SPP_Close_Server_Port
	SPP_Open_Port_Request_Response
	SPP_Register_SDP_Record
	SPP_Register_Raw_SDP_Record
	SPP_Open_Remote_Port
	SPP_Close_Port
	SPP_Data_Read
	SPP_Data_Write
	SPP_Change_Buffer_Size
	SPP_Purge_Buffer
	SPP_Send_Break
	SPP_Line_Status
	SPP_Port_Status
	SPP_Send_Port_Information
	SPP_Respond_Port_Information
	SPP_Query_Remote_Port_Information
	SPP_Respond_Query_Port_Information
	SPP_Get_Configuration_Parameters
	SPP_Set_Configuration_Parameters
	SPP_Get_Server_Connection_Mode
	SPP_Set_Server_Connection_Mode
	SPP_Get_Port_Connection_State
	SPP_Set_Queuing_Parameters
	SPP_Get_Queuing_Parameters
	SPP_Query_Server_Present

	3.2.2 SPP Event Callback Protoype
	SPP_Event_Callback_t

	3.2.3 SPP Events
	etPort_Open_Indication
	etPort_Open_Confirmation
	etPort_Close_Port_Indication
	etPort_Status_Indication
	etPort_Data_Indication
	et Port_Transmit_Buffer_Empty_Indication
	etPort_Line_Status_Indication
	etPort_Send_Port_Information_Indication
	etPort_Send_Port_Information_Confirmation
	etPort_Query_Port_Information_Indication
	etPort_Query_Port_Information_Confirmation
	etPort_Open_Request_Indication

	3.3 GOEP Programming Interface
	3.3.1 GOEP Commands
	GOEP_Open_Server_Port
	GOEP_Close_Server_Port
	GOEP_Open_Port_Request_Response
	GOEP_Register_SDP_Record
	GOEP_Register_Raw_SDP_Record
	GOEP_Open_Remote_Port
	GOEP_Close_Port
	GOEP_Connect_Request
	GOEP_Disconnect_Request
	GOEP_Put_Request
	GOEP_Get_Request
	GOEP_Set_Path_Request
	GOEP_Abort_Request
	GOEP_Command_Response
	GOEP_Get_Server_Connection_Mode
	GOEP_Set_Server_Connection_Mode
	GOEP_Find_Application_Parameter_Header_By_Tag_ID
	GOEP_Find_Header
	GOEP_Generate_Digest_Nonce

	3.3.2 GOEP Event Callback Protoype
	GOEP_Event_Callback_t

	3.3.3 GOEP Events
	etOBEX_Port_Open_Indication
	etOBEX_Port_Open_Confirmation
	etOBEX_Port_Close_Indication
	etOBEX_Connect_Indication
	etOBEX_Connect_Confirmation
	etOBEX_Disconnect_Indication
	etOBEX_Disconnect_Confirmation
	etOBEX_Put_Indication
	etOBEX_Put_Confirmation
	etOBEX_Get_Indication
	etOBEX_Get_Confirmation
	etOBEX_Set_Path_Indication
	etOBEX_Set_Path_Confirmation
	etOBEX_Abort_Indication
	etOBEX_Abort_Confirmation
	etOBEX_Port_Open_Request_Indication

	3.4 OTP Programming Interface
	3.4.1 OTP Commands/Responses
	OTP_Open_Server_Port
	OTP_Close_Server_Port
	OTP_Open_Port_Request_Response
	OTP_Register_SDP_Record
	OTP_Register_Raw_SDP_Record
	OTP_Open_Remote_Port
	OTP_Close_Port
	OTP_Client_Connect
	OTP_Client_Disconnect
	OTP_Client_Get_Directory
	OTP_Client_Get_Object
	OTP_Client_Put_Object_Request
	OTP_Client_Put_Sync_Object_Request
	OTP_Client_Put_Object
	OTP_Client_Set_Path
	OTP_Client_Delete_Object_Request
	OTP_Client_Delete_Sync_Object_Request
	OTP_Client_Abort_Request
	OTP_Connect_Response
	OTP_Get_Directory_Request_Response
	OTP_Set_Path_Response
	OTP_Abort_Response
	OTP_Get_Object_Response
	OTP_Delete_Object_Response
	OTP_Delete_Sync_Object_Response
	OTP_Put_Object_Response
	OTP_Put_Sync_Object_Response
	OTP_Get_Server_Connection_Mode
	OTP_Set_Server_Connection_Mode

	3.4.2 Response Codes for OTP Operations
	3.4.3 OTP Event Callback Protoype
	OTP_Event_Callback_t

	3.4.4 OTP Events
	etOTP_Port_Open_Indication
	etOTP_Port_Open_Confirmation
	etOTP_Port_Open_Request_Indication
	etOTP_Port_Close_Port_Indication
	etOTP_Connect_Request
	etOTP_Connect_Response
	etOTP_Disconnect_Request
	etOTP_Disconnect_Response
	etOTP_Set_Path_Request
	etOTP_Set_Path_Response
	etOTP_Abort_Request
	etOTP_Abort_Response
	etOTP_Delete_Object_Request
	etOTP_Delete_Sync_Object_Request
	etOTP_Delete_Object_Response
	etOTP_Delete_Sync_Object_Response
	etOTP_Put_Object_Request
	etOTP_Put_Sync_Object_Request
	etOTP_Put_Object_Response
	etOTP_Put_Sync_Object_Response
	etOTP_Get_Object_Request
	etOTP_Get_Object_Response
	etOTP_Get_Directory_Request
	etOTP_Get_Directory_Response
	etOTP_Free_Directory_Information

	4. File Distributions

